The State of the Hybrid Operating Room: Technological Acceleration at the Pinnacle of Collaboration

  • Alejandra M. Casar Berazaluce
  • Rachel E. Hanke
  • Daniel von AllmenEmail author
  • John M. Racadio
Pediatric Surgery (A.C. Fischer, Section Editor)
Part of the following topical collections:
  1. Pediatric Surgery


Purpose of Review

As imaging technologies expand to include image-guided anatomical navigation and surgical techniques evolve to accommodate increasingly complex interventions with minimally invasive approaches, interventionalists and surgeons have convened in a novel area of hospitals around the world, the hybrid operating room. Although these assets have long been used for cardiovascular procedures, the integration of these tools in a designated surgery suite has given rise to a variety of novel interventions and multi-specialty collaborations.

Recent Findings

In this review, we highlight current international hybrid room experiences in many fields, spanning from neurosurgery to urology. We also comment on our institutional journey of surgery-interventional radiology collaborations in developing our image-guided surgery program for a pediatric population.


As the hybrid operating room continues to gain traction globally, surgeons and interventional radiologists’ creativity and collaborative problem-solving skills will continue to be pushed to improve patient care. Identifying practice gaps and collaborating with industry is vital for further refinement of these tools.


Hybrid operating room Interventional radiology Image-guided surgery Innovative operating room Surgical navigation Computer-assisted surgery 


Compliance with Ethical Guidelines

Conflict of interest

Alejandra M. Casar Berazaluce, Rachel E. Hanke, Daniel von Allmen, and John M. Racadio declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Mezger U, Jendrewski C, Bartels M. Navigation in surgery. Langenbeck’s Arch Surg. 2013;398:501–14.CrossRefGoogle Scholar
  2. 2.
    Iyer R, Chaichana K. Minimally Invasive Resection of Deep-seated High-grade Gliomas Using Tubular Retractors and Exoscopic Visualization. J Neurol Surg Part A. 2018;79:330–6.CrossRefGoogle Scholar
  3. 3.
    Labib MA, Shah M, Kassam AB, et al. The safety and feasibility of image-guided BrainPath-mediated trans sulcal hematoma evacuation. Neurosurgery. 2017;80:515–24.PubMedGoogle Scholar
  4. 4.
    Ashour R, See AP, Dasenbrock HH, Khandelwal P, Patel NJ, Belcher B, Aziz-Sultan MA. Refinement of the hybrid neuroendovascular operating suite: current and future applications. World Neurosurg. 2016;91:6–11.CrossRefGoogle Scholar
  5. 5.
    Kulcsár Z, Machi P, Schaller K, Lovblad KO, Bijlenga P. Trans-venous embolization of a basal ganglia ruptured arteriovenous malformation with open surgical arterial control: A hybrid technique. J Neuroradiol. 2018;45:202–5.CrossRefGoogle Scholar
  6. 6.
    Fong Y-W, Hsu S-K, Huang C-T, Hsieh C-T, Chen M-H, Huang J-S, Chang C-J, Su I-C. Impact of Intraoperative 3-Dimensional Volume-Rendering Rotational Angiography on Clip Repositioning Rates in Aneurysmal Surgery. World Neurosurg. 2018;114:e573–80.CrossRefGoogle Scholar
  7. 7.
    Marbacher S, Mendelowitsch I, Grüter BE, Diepers M, Remonda L, Fandino J (2018) Comparison of 3D intraoperative digital subtraction angiography and intraoperative indocyanine green video angiography during intracranial aneurysm surgery. Journal of Neurosurgery 1–8.Google Scholar
  8. 8.
    Cenzato M, Dones F, Boeris D, Marcati E, Fratianni A, Crisà FM, Debernardi A. Contemporary tools in arteriovenous malformations surgery. J Neurosurg Sci. 2018. Scholar
  9. 9.
    Fomekong E, Safi SE, Raftopoulos C. Spine navigation based on 3-dimensional robotic fluoroscopy for accurate percutaneous pedicle screw placement: a prospective study of 66 consecutive cases. World Neurosurg. 2017;108:76–83.CrossRefGoogle Scholar
  10. 10.
    ∙∙ Fomekong E, Pierrard J, Raftopoulos C. Comparative cohort study of percutaneous pedicle screw implantation without versus with navigation in patients undergoing surgery for degenerative lumbar disc disease. World Neurosurg. 2018;111:e410–e417. One of the few comparative studies showing the benefit of hybrid operations; builds on prior experience and prospective data.CrossRefGoogle Scholar
  11. 11.
    Glicksman JT, Reger C, Parasher AK, Kennedy DW. Accuracy of computer-assisted navigation: significant augmentation by facial recognition software. Int Forum of Allergy Rhinol. 2017;7:884–8.CrossRefGoogle Scholar
  12. 12.
    Grauvogel TD, Engelskirchen P, Semper-Hogg W, Grauvogel J, Laszig R. Navigation accuracy after automatic- and hybrid-surface registration in sinus and skull base surgery. PLoS ONE. 2017;12:e0180975.CrossRefGoogle Scholar
  13. 13.
    Tan HY, Yang J, Wang ZY, Zhu WD, Chai YC, Jia H, Wu H. Simultaneous supervision by microscope of endoscope-assisted microsurgery via presigmoid retrolabyrinthine approach: A pilot study. Eur Ann Otorhinolaryngol Head and Neck Dis. 2018. Scholar
  14. 14.
    Dalgorf DM, Sacks R, Wormald P-J, Naidoo Y, Panizza B, Uren B, Brown C, Curotta J, Snidvongs K, Harvey RJ. Image-guided surgery influences perioperative morbidity from endoscopic sinus surgery. Otolaryngol-Head and Neck Surg. 2013;149:17–29.CrossRefGoogle Scholar
  15. 15.
    Richter PH, Yarboro S, Kraus M, Gebhard F. One year orthopaedic trauma experience using an advanced interdisciplinary hybrid operating room. Injury. 2015;46:S129–34.CrossRefGoogle Scholar
  16. 16.
    Fujiwara T, Kunisada T, Takeda K, Hasei J, Nakata E, Nakahara R, Yoshida A, Ozaki T. Intraoperative O-arm-navigated resection in musculoskeletal tumors. J Orthop Sci. 2018. Scholar
  17. 17.
    Papakonstantinou NA, Baikoussis NG, Dedeilias P, Argiriou M, Charitos C. Cardiac surgery or interventional cardiology? Why not both? Let’s go hybrid. J Cardiol. 2017;69:46–56.CrossRefGoogle Scholar
  18. 18.
    Holzer RJ, Sisk M, Chisolm JL, Hill SL, Olshove V, Phillips A, Cheatham JP, Galantowicz M. Completion angiography after cardiac surgery for congenital heart disease: complementing the intraoperative imaging modalities. Pediatr Cardiol. 2009;30:1075–82.CrossRefGoogle Scholar
  19. 19.
    Zhao DX, Leacche M, Balaguer JM, Boudoulas KD, Damp JA, Greelish JP, Byrne JG. Routine intraoperative completion angiography after coronary artery bypass grafting and 1-stop hybrid revascularization. J Am Coll Cardiol. 2009;53:232–41.CrossRefGoogle Scholar
  20. 20.
    Pedra CA, Fleishman C, Pedra SF, Cheatham JP. New imaging modalities in the catheterization laboratory. Curr Opin Cardiol. 2011;26:86–93.CrossRefGoogle Scholar
  21. 21.
    Lee SC, Joh JH, Chang J-H, et al. Hybrid treatment of multilevel revascularization in patients with peripheral arterial disease—a multi-centre study in Korea. Vasa. 2018;47:235–41.CrossRefGoogle Scholar
  22. 22.
    Illuminati G, Pizzardi G, Pasqua R, Frezzotti F, Palumbo P, Macrina F, Calio’ F. Hybrid treatment of tandem, common carotid/innominate artery and ipsilateral carotid bifurcation stenoses by simultaneous, retrograde proximal stenting and eversion carotid endarterectomy: Preliminary results of a case series. Int J Surg. 2018;52:329–33.CrossRefGoogle Scholar
  23. 23.
    Yang S-M, Ko W-C, Lin M-W, Hsu H-H, Chan C-Y, Wu I-H, Chang Y-C, Chen J-S. Image-guided thoracoscopic surgery with dye localization in a hybrid operating room. J Thorac Dis. 2016;8:S681–9.CrossRefGoogle Scholar
  24. 24.
    Fumimoto S, Sato K, Koyama M, Yamamoto K, Narumi Y, Hanaoka N, Katsumata T. Combined lipiodol marking and video-assisted thoracoscopic surgery in a hybrid operating room. J Thorac Dis. 2018;10:2940–7.CrossRefGoogle Scholar
  25. 25.
    Narayanam S, Gerstle T, Amaral J, John P, Parra D, Temple M, Connolly B. Lung tattooing combined with immediate video-assisted thoracoscopic resection (IVATR) as a single procedure in a hybrid room: our institutional experience in a pediatric population. Pediatr Radiol. 2013;43:1144–51.CrossRefGoogle Scholar
  26. 26.
    Ujiie H, Effat A, Yasufuku K. Image-guided thoracic surgery in the hybrid operation room. J Vis Surg. 2017;3:148–148.CrossRefGoogle Scholar
  27. 27.
    Chao Y-K, Wen C-T, Fang H-Y, Hsieh M-J. A single-center experience of 100 image-guided video-assisted thoracoscopic surgery procedures. J Thorac Dis. 2018;10:S1624–30.CrossRefGoogle Scholar
  28. 28.
    Kidane B, Yasufuku K. Advances in image-guided thoracic surgery. Thorac Surg Clin. 2016;26:129–38.CrossRefGoogle Scholar
  29. 29.
    ∙∙ Kirkpatrick AW, Vis C, Dubé M, et al. The evolution of a purpose designed hybrid trauma operating room from the trauma service perspective: the RAPTOR (resuscitation with angiography percutaneous treatments and operative resuscitations). Injury 2014;45:1413–1421. Describes critical steps in design and implementation of a purpose-specific hybrid operating suite.Google Scholar
  30. 30.
    Kataoka Y, Minehara H, Kashimi F, Hanajima T, Yamaya T, Nishimaki H, Asari Y. Hybrid treatment combining emergency surgery and intraoperative interventional radiology for severe trauma. Injury. 2016;47:59–63.CrossRefGoogle Scholar
  31. 31.
    Wiegmann AL, Broucek JR, Fletcher RN, Luu MB, Deziel DJ, Myers JA. Image-guided navigation in lymph node biopsy. JSLS. 2018;22(e2017):00099.Google Scholar
  32. 32.
    Benckert C, Bruns C. The surgeon’s contribution to image-guided oncology. Viszeralmedizin. 2014;30:232–6.CrossRefGoogle Scholar
  33. 33.
    Kenngott HG, Wagner M, Gondan M, et al. Real-time image guidance in laparoscopic liver surgery: first clinical experience with a guidance system based on intraoperative CT imaging. Surg Endosc. 2013;28:933–40.CrossRefGoogle Scholar
  34. 34.
    Baiocchi GL, Diana M, Boni L. Indocyanine green-based fluorescence imaging in visceral and hepatobiliary and pancreatic surgery: state of the art and future directions. World J Gastroenterol. 2018;24:2921–30.CrossRefGoogle Scholar
  35. 35.
    Hoogstins CES, Boogerd LSF, Sibinga Mulder BG, et al. Image-guided surgery in patients with pancreatic cancer: first results of a clinical trial using SGM-101, a novel carcinoembryonic antigen-targeting, near-infrared fluorescent agent. Ann Surg Oncol. 2018. Scholar
  36. 36.
    Panayotopoulos P, Bouvier A, Besnier L, Rousselet MC, Nedelcu C, Baize N, Beydon L, Aubé C, Azzouzi A-R, Bigot P. Laparoscopic partial nephrectomy following tumor embolization in a hybrid room. Feasibility and clinical outcomes. Surg Oncol. 2017;26:377–81.CrossRefGoogle Scholar
  37. 37.
    van Oosterom MN, Meershoek P, KleinJan GH, Hendricksen K, Navab N, van de Velde CJH, van der Poel HG, van Leeuwen FWB. Navigation of fluorescence cameras during soft tissue surgery—is it possible to use a single navigation setup for various open and laparoscopic urological surgery applications? J Urol. 2018;199:1061–8.CrossRefGoogle Scholar
  38. 38.
    Gray RL, Ortiz RA, Bastidas N. Combined surgery and intraoperative sclerotherapy for vascular malformations of the head/neck. Ann Plast Surg. 2018. Scholar
  39. 39.
    Clark A, Farber MK, Sviggum H, Camann W. Cesarean delivery in the hybrid operating suite. Anesth Analg. 2013;117:1187–9.CrossRefGoogle Scholar
  40. 40.
    Konishi Y, Yamamoto S, Sugiki K, Sakamoto H, Sawamura S. A novel and multidisciplinary strategy for cesarean delivery with placenta percreta. A & A Case Rep. 2016;7:135–8.CrossRefGoogle Scholar
  41. 41.
    Lindberg K, Walter L, Raviola E. Performing boundary work: The emergence of a new practice in a hybrid operating room. Soc Sci Med. 2017;182:81–8.CrossRefGoogle Scholar
  42. 42.
    Eder SP, Register JL. 10 management considerations for implementing an endovascular hybrid OR. AORN J. 2014;100:260–70.CrossRefGoogle Scholar
  43. 43.
    Andrés C, Pérez-García H, Agulla M, Torres R, Miguel D, del Castillo A, Flota CM, Alonso D, de Frutos J, Vaquero C. Patient doses and occupational exposure in a hybrid operating room. Phys. Med. 2017;37:37–42.CrossRefGoogle Scholar
  44. 44.
    McDaniel JD, Racadio JM, Patel MN, Johnson ND, Kukreja K. CT-guided localization of pulmonary nodules in children prior to video-assisted thoracoscopic surgical resection utilizing a combination of two previously described techniques. Pediatr Radiol. 2018;48:626–31.CrossRefGoogle Scholar
  45. 45.
    Racadio JM, Babic D, Homan R, Rampton JW, Patel MN, Racadio JM, Johnson ND. Live 3D guidance in the interventional radiology suite. Am J Roentgenol. 2007;189:W357–64.CrossRefGoogle Scholar
  46. 46.
    Patel MN, Racadio JM, Levitt MA, Bischoff A, Racadio JM, Peña A. Complex cloacal malformations: use of rotational fluoroscopy and 3-D reconstruction in diagnosis and surgical planning. Pediatr Radiol. 2011;42:355–63.CrossRefGoogle Scholar
  47. 47.
    Hawkins CM, Kukreja K, Singewald T, Minevich E, Johnson ND, Reddy P, Racadio JM. Use of cone-beam CT and live 3-D needle guidance to facilitate percutaneous nephrostomy and nephrolithotripsy access in children and adolescents. Pediatr Radiol. 2015;46:570–4.CrossRefGoogle Scholar
  48. 48.
    Racadio JM, Nachabe R, Homan R, Schierling R, Racadio JM, Babić D. Augmented reality on a C-arm system: a preclinical assessment for percutaneous needle localization. Radiology. 2016;281:249–55.CrossRefGoogle Scholar
  49. 49.
    ∙ Elmi-Terander A, Nachabe R, Skulason H, Pedersen K, Söderman M, Racadio J, Babic D, Gerdhem P, Edström E. Feasibility and accuracy of thoracolumbar minimally invasive pedicle screw placement with augmented reality navigation technology. SPINE 2018;43:1018–1023. Demonstrates the increased safety of minimally invasive spinal surgery using imaging overlay and planned path via augmented reality.CrossRefGoogle Scholar
  50. 50.
    de Blanck SR, Scherman-Rydhög J, Siemsen M, Christensen M, Baeksgaard L, Irming Jølck R, Specht L, Andresen TL, Persson GF. Feasibility of a novel liquid fiducial marker for use in image guided radiotherapy of oesophageal cancer. Br J Radiol. 2018;91(1092):20180236.CrossRefGoogle Scholar
  51. 51.
    Tepper OM, Rudy HL, Lefkowitz A, Weimer KA, Marks SM, Stern CS, Garfein ES. Mixed reality with HoloLens. Plast Reconstr Surg. 2017;140:1066–70.CrossRefGoogle Scholar
  52. 52.
    Fida B, Cutolo F, di Franco G, Ferrari M, Ferrari V. Augmented reality in open surgery. Updates Surg. 2018. Scholar
  53. 53.
    Jiang T, Zhu M, Zan T, Gu B, Li Q. A novel augmented reality-based navigation system in perforator flap transplantation—a feasibility study. Ann Plast Surg. 2017;79:192–6.CrossRefGoogle Scholar
  54. 54.
    Hsieh T, Cervenka B, Dedhia R, Strong EB, Steele T. Assessment of a patient-specific, 3-dimensionally printed endoscopic sinus and skull base surgical model. JAMA Otolaryngol-Head & Neck Surg. 2018;144:574.CrossRefGoogle Scholar
  55. 55.
    Tang R, Ma L, Li A, Yu L, Rong Z, Zhang X, Xiang C, Liao H, Dong J. Choledochoscopic examination of a 3-dimensional printing model using augmented reality techniques: a preliminary proof of concept study. Surg Innov. 2018. Scholar
  56. 56.
    Nachabé R, Hendriks BHW, Schierling R, Hales J, Racadio JM, Rottenberg S, Ruers TJM, Babic D, Racadio JM. Real-time in vivo characterization of primary liver tumors with diffuse optical spectroscopy during percutaneous needle interventions. Invest Radiol. 2015;50:443–8.CrossRefGoogle Scholar
  57. 57.
    Moglia A, Sinceri S, Ferrari V, Ferrari M, Mosca F, Morelli L. Proficiency-based training of medical students using virtual simulators for laparoscopy and robot-assisted surgery: results of a pilot study. Updates Surg. 2018. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Alejandra M. Casar Berazaluce
    • 1
  • Rachel E. Hanke
    • 1
  • Daniel von Allmen
    • 1
    Email author
  • John M. Racadio
    • 2
  1. 1.Department of SurgeryCincinnati Children’s HospitalCincinnatiUSA
  2. 2.Department of RadiologyCincinnati Children’s HospitalCincinnatiUSA

Personalised recommendations