Advertisement

Current Surgery Reports

, 6:13 | Cite as

Surgical Management of Hilar Cholangiocarcinoma

  • Alexander V. Fisher
  • Sean M. Ronnekleiv-Kelly
Surgical Oncology (A. Tufaro, Section Editor)
Part of the following topical collections:
  1. Surgical Oncology

Abstract

Purpose of Review

To provide a comprehensive review of the preoperative and operative considerations for the surgical management of hilar cholangiocarcinoma.

Recent Findings

The management of hilar cholangiocarcinoma has evolved over the past 20 years, with data from large institutional series emerging, which has influenced decisions regarding the need for preoperative biliary drainage, portal-vein embolization, extent of surgical resection, role of transplantation, and efficacy of adjuvant and palliative therapies.

Summary

Hepatectomy has become the standard of care for resectable hilar cholangiocarcinoma, while transplantation can offer promising results for unresectable patients with localized disease. Perioperative mortality can be minimized through careful preoperative management of the future liver remnant via appropriate use of biliary drainage and portal-vein embolization. Adjuvant therapies prolong survival after resection, while emerging data on endoluminal therapies and radiation provide palliation and improved survival for patients with advanced, unresectable disease.

Keywords

Hilar cholangiocarcinoma Hepatectomy Biliary drainage Liver transplantation 

Notes

Compliance with Ethical Standards

Conflict of interest

Alexander V. Fisher and Sean M. Ronnekleiv-Kelly declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Nakeeb A, Pitt HA, Sohn TA, et al. Cholangiocarcinoma. A spectrum of intrahepatic, perihilar, and distal tumors. Ann Surg. 1996;224(4):463–73. http://www.ncbi.nlm.nih.gov/pubmed/8857851. Accessed 27 March 2018.
  2. 2.
    Altekruse SF, Petrick JL, Rolin AI, et al. Geographic variation of intrahepatic cholangiocarcinoma, extrahepatic cholangiocarcinoma, and hepatocellular carcinoma in the United States. PLoS ONE. 2015;10(4):e0120574.  https://doi.org/10.1371/journal.pone.0120574.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Data are from the multiple cause of death files, 1999–2016 as compiled from data provided by the 57 vital statistics jurisdictions through the VSCP. Centers for Disease Control and Prevention, National Center for Health Statistics. Underlying Cause of Death 1999–2016 on CDC WONDER Online Database, released December 2017.Google Scholar
  4. 4.
    Valle J, Wasan H, Palmer DH, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010;362(14):1273–81.  https://doi.org/10.1056/NEJMoa0908721.PubMedGoogle Scholar
  5. 5.
    DeOliveira ML, Cunningham SC, Cameron JL, et al. Cholangiocarcinoma: thirty-one-year experience with 564 patients at a single institution. Ann Surg. 2007;245(5):755–62.  https://doi.org/10.1097/01.sla.0000251366.62632.d3.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Miyazaki M, Kato A, Ito H, et al. Combined vascular resection in operative resection for hilar cholangiocarcinoma: does it work or not? Surgery. 2007;141(5):581–8.  https://doi.org/10.1016/j.surg.2006.09.016.PubMedGoogle Scholar
  7. 7.
    Lee SG, Song GW, Hwang S, et al. Surgical treatment of hilar cholangiocarcinoma in the new era: the Asan experience. J Hepatobiliary Pancreat Sci. 2010;17(4):476–89.  https://doi.org/10.1007/s00534-009-0204-5.PubMedGoogle Scholar
  8. 8.
    Unno M, Katayose Y, Rikiyama T, et al. Major hepatectomy for perihilar cholangiocarcinoma. J Hepatobiliary Pancreat Sci. 2010;17(4):463–9.  https://doi.org/10.1007/s00534-009-0206-3.PubMedGoogle Scholar
  9. 9.
    Rea DJ, Heimbach JK, Rosen CB, et al. Liver transplantation with neoadjuvant chemoradiation is more effective than resection for hilar cholangiocarcinoma. Ann Surg. 2005;242(3):451-8-61. http://www.ncbi.nlm.nih.gov/pubmed/16135931. Accessed 27 March 2018.
  10. 10.
    •• Darwish Murad S, Kim WR, Harnois DM, et al. Efficacy of neoadjuvant chemoradiation, followed by liver transplantation, for perihilar cholangiocarcinoma at 12 US Centers. Gastroenterology. 2012;143(1):88–98.e3.  https://doi.org/10.1053/j.gastro.2012.04.008. Multi-institutional study which validates prior single instutional reports demonstrating promising survival outcomes for unresectable patients undergoing neoadjuvant therapy and liver transplantation. For 287 listed for transplantation, 5-year survival was 53%, and for those receiving a transplantation, 5-year recurrence-free survival was 65%.
  11. 11.
    Sithithaworn P, Yongvanit P, Duenngai K, Kiatsopit N, Pairojkul C. Roles of liver fluke infection as risk factor for cholangiocarcinoma. J Hepatobiliary Pancreat Sci. 2014;21(5):301–8.  https://doi.org/10.1002/jhbp.62.PubMedGoogle Scholar
  12. 12.
    Wongjarupong N, Assavapongpaiboon B, Susantitaphong P, et al. Non-alcoholic fatty liver disease as a risk factor for cholangiocarcinoma: a systematic review and meta-analysis. BMC Gastroenterol. 2017;17(1):149.  https://doi.org/10.1186/s12876-017-0696-4.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Chapman RW, Williamson KD. Are dominant strictures in primary sclerosing cholangitis a risk factor for cholangiocarcinoma? Curr Hepatol Rep. 2017;16(2):124–9.  https://doi.org/10.1007/s11901-017-0341-2.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Weiss MJ, Cosgrove D, Herman JM, Rastegar N, Kamel I, Pawlik TM. Multimodal treatment strategies for advanced hilar cholangiocarcinoma. Langenbeck’s Arch Surg. 2014;399(6):679–92.  https://doi.org/10.1007/s00423-014-1219-1.Google Scholar
  15. 15.
    Celotti A, Solaini L, Montori G, Coccolini F, Tognali D, Baiocchi G. Preoperative biliary drainage in hilar cholangiocarcinoma: systematic review and meta-analysis. Eur J Surg Oncol. 2017;43(9):1628–35.  https://doi.org/10.1016/j.ejso.2017.04.001.PubMedGoogle Scholar
  16. 16.
    Zhang X-F, Beal EW, Merath K, et al. Oncologic effects of preoperative biliary drainage in resectable hilar cholangiocarcinoma: percutaneous biliary drainage has no adverse effects on survival. J Surg Oncol. 2017.  https://doi.org/10.1002/jso.24945.Google Scholar
  17. 17.
    Ribero D, Zimmitti G, Aloia TA, et al. Preoperative cholangitis and future liver remnant volume determine the risk of liver failure in patients undergoing resection for hilar cholangiocarcinoma. J Am Coll Surg. 2016;223(1):87–97.  https://doi.org/10.1016/j.jamcollsurg.2016.01.060.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Olthof PB, Wiggers JK, Groot Koerkamp B, et al. Postoperative liver failure risk score: identifying patients with resectable perihilar cholangiocarcinoma who can benefit from portal vein embolization. J Am Coll Surg. 2017;225(3):387–94.  https://doi.org/10.1016/j.jamcollsurg.2017.06.007.PubMedGoogle Scholar
  19. 19.
    •• Wiggers JK, Groot Koerkamp B, Cieslak KP, et al. Postoperative mortality after liver resection for perihilar cholangiocarcinoma: development of a risk score and importance of biliary drainage of the future liver remnant. J Am Coll Surg. 2016;223(2):321–31.e1.  https://doi.org/10.1016/j.jamcollsurg.2016.03.035. This study provides data to guide pre-operative decision making regarding biliary drainage procedures. Risk for procedural-related cholangitis should be balanced with degree of bilirubin elevation and size of the future liver remnant.
  20. 20.
    Yokoyama Y, Nagino M, Nimura Y. Mechanism of impaired hepatic regeneration in cholestatic liver. J Hepatobiliary Pancreat Surg. 2007;14(2):159–66.  https://doi.org/10.1007/s00534-006-1125-1.PubMedGoogle Scholar
  21. 21.
    Kloek JJ, van der Gaag NA, Aziz Y, et al. Endoscopic and percutaneous preoperative biliary drainage in patients with suspected hilar cholangiocarcinoma. J Gastrointest Surg. 2010;14(1):119–25.  https://doi.org/10.1007/s11605-009-1009-1.PubMedGoogle Scholar
  22. 22.
    Kawakami H, Kuwatani M, Onodera M, et al. Endoscopic nasobiliary drainage is the most suitable preoperative biliary drainage method in the management of patients with hilar cholangiocarcinoma. J Gastroenterol. 2011;46(2):242–8.  https://doi.org/10.1007/s00535-010-0298-1.PubMedGoogle Scholar
  23. 23.
    Tang Z, Yang Y, Meng W, Li X. Best option for preoperative biliary drainage in Klatskin tumor. Medicine (Baltimore). 2017;96(43):e8372.  https://doi.org/10.1097/MD.0000000000008372.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Chapman WC, Sharp KW, Weaver F, Sawyers JL. Tumor seeding from percutaneous biliary catheters. Ann Surg. 1989;209(6):708-13-5. http://www.ncbi.nlm.nih.gov/pubmed/2658881. Accessed 19 April 2018.
  25. 25.
    Takahashi Y, Nagino M, Nishio H, Ebata T, Igami T, Nimura Y. Percutaneous transhepatic biliary drainage catheter tract recurrence in cholangiocarcinoma. Br J Surg. 2010;97(12):1860–6.  https://doi.org/10.1002/bjs.7228.PubMedGoogle Scholar
  26. 26.
    Kang MJ, Choi Y-S, Jang J-Y, Han IW, Kim S-W. Catheter tract recurrence after percutaneous biliary drainage for hilar cholangiocarcinoma. World J Surg. 2013;37(2):437–42.  https://doi.org/10.1007/s00268-012-1844-1.PubMedGoogle Scholar
  27. 27.
    Mansour JC, Aloia TA, Crane CH, Heimbach JK, Nagino M, Vauthey J-N. Hilar cholangiocarcinoma: expert consensus statement. HPB (Oxford). 2015;17(8):691–9.  https://doi.org/10.1111/hpb.12450.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Kim S, Maynard EC, Shah MB, et al. Risk Factors for 30-day readmissions after hepatectomy: analysis of 2444 patients from the ACS-NSQIP database. J Gastrointest Surg. 2015;19(2):266–71.  https://doi.org/10.1007/s11605-014-2713-z.PubMedGoogle Scholar
  29. 29.
    Nakagawa K, Tanaka K, Nojiri K, et al. The modified glasgow prognostic score as a predictor of survival after hepatectomy for colorectal liver metastases. Ann Surg Oncol. 2014;21(5):1711–8.  https://doi.org/10.1245/s10434-013-3342-6.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Benson AB, Robert CH, MI D, et al. National comprehensive cancer network clinical practice guidelines in oncology (NCCN Guidelines): hepatobiliary cancers. 2018. https://www.nccn.org/professionals/physician_gls/pdf/hepatobiliary.pdf. Accessed 30 March 2018.
  31. 31.
    Kim BH, Kim E, Kim K, et al. The impact of perioperative CA19-9 change on the survival and recurrence patterns after adjuvant chemoradiotherapy in resectable extrahepatic cholangiocarcinoma. J Surg Oncol. 2017.  https://doi.org/10.1002/jso.24856.PubMedCentralGoogle Scholar
  32. 32.
    Heimbach JK, Sanchez W, Rosen CB, Gores GJ. Trans-peritoneal fine needle aspiration biopsy of hilar cholangiocarcinoma is associated with disease dissemination. HPB (Oxford). 2011;13(5):356–60.  https://doi.org/10.1111/j.1477-2574.2011.00298.x.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Juntermanns B, Kaiser GM, Reis H, et al. Klatskin-mimicking lesions: still a diagnostical and therapeutical dilemma? Hepatogastroenterology. 58(106):265–9. http://www.ncbi.nlm.nih.gov/pubmed/21661379. Accessed 27 March 2018.
  34. 34.
    Uhlmann D, Wiedmann M, Schmidt F, et al. Management and outcome in patients with Klatskin-mimicking lesions of the biliary tree. J Gastrointest Surg. 2006;10(8):1144–50.  https://doi.org/10.1016/j.gassur.2006.04.003.PubMedGoogle Scholar
  35. 35.
    Lee SJ, Lee YS, Lee MG, Lee SH, Shin E, Hwang J-H. Triple-tissue sampling during endoscopic retrograde cholangiopancreatography increases the overall diagnostic sensitivity for cholangiocarcinoma. Gut Liver. 2014;8(6):669–73.  https://doi.org/10.5009/gnl13292.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Roos E, Hubers LM, Coelen RJS, et al. IgG4-associated cholangitis in patients resected for presumed perihilar cholangiocarcinoma: a 30-year tertiary care experience. Am J Gastroenterol. 2018.  https://doi.org/10.1038/s41395-018-0036-5.PubMedGoogle Scholar
  37. 37.
    Bismuth H, Corlette MB. Intrahepatic cholangioenteric anastomosis in carcinoma of the hilus of the liver. Surg Gynecol Obstet. 1975;140(2):170–8. http://www.ncbi.nlm.nih.gov/pubmed/1079096. Accessed 28 March 2018.
  38. 38.
    Jarnagin WR, Fong Y, DeMatteo RP, et al. Staging, resectability, and outcome in 225 patients with hilar cholangiocarcinoma. Ann Surg. 2001;234(4):507-17-9. http://www.ncbi.nlm.nih.gov/pubmed/11573044. Accessed 28 March 2018.
  39. 39.
    Matsuo K, Rocha FG, Ito K, et al. The Blumgart preoperative staging system for hilar cholangiocarcinoma: analysis of resectability and outcomes in 380 patients. J Am Coll Surg. 2012;215(3):343–55.  https://doi.org/10.1016/j.jamcollsurg.2012.05.025.PubMedGoogle Scholar
  40. 40.
    Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A. AJCC cancer staging manual (7th edition). New York: Springer; 2010.Google Scholar
  41. 41.
    Deoliveira ML, Schulick RD, Nimura Y, et al. New staging system and a registry for perihilar cholangiocarcinoma. Hepatology. 2011;53(4):1363–71.  https://doi.org/10.1002/hep.24227.PubMedGoogle Scholar
  42. 42.
    Ito F, Agni R, Rettammel RJ, et al. Resection of hilar cholangiocarcinoma: concomitant liver resection decreases hepatic recurrence. Ann Surg. 2008;248(2):273–9.  https://doi.org/10.1097/SLA.0b013e31817f2bfd.PubMedGoogle Scholar
  43. 43.
    Cho MS, Kim SH, Park SW, et al. Surgical outcomes and predicting factors of curative resection in patients with hilar cholangiocarcinoma: 10-year single-institution experience. J Gastrointest Surg. 2012;16(9):1672–9.  https://doi.org/10.1007/s11605-012-1960-0.PubMedGoogle Scholar
  44. 44.
    Nuzzo G, Giuliante F, Ardito F, et al. Improvement in perioperative and long-term outcome after surgical treatment of hilar cholangiocarcinoma. Arch Surg. 2012;147(1):26.  https://doi.org/10.1001/archsurg.2011.771.PubMedGoogle Scholar
  45. 45.
    Hirano S, Kondo S, Tanaka E, et al. Outcome of surgical treatment of hilar cholangiocarcinoma: a special reference to postoperative morbidity and mortality. J Hepatobiliary Pancreat Sci. 2010;17(4):455–62.  https://doi.org/10.1007/s00534-009-0208-1.PubMedGoogle Scholar
  46. 46.
    Nishio H, Nagino M, Nimura Y. Surgical management of hilar cholangiocarcinoma: the Nagoya experience. HPB (Oxford). 2005;7(4):259.  https://doi.org/10.1080/13651820500373010.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Chen X-P, Lau WY, Huang Z-Y, et al. Extent of liver resection for hilar cholangiocarcinoma. Br J Surg. 2009;96(10):1167–75.  https://doi.org/10.1002/bjs.6618.PubMedGoogle Scholar
  48. 48.
    Nishio H, Hidalgo E, Hamady ZZR, et al. Left hepatic trisectionectomy for hepatobiliary malignancy: results and an appraisal of its current role. Ann Surg. 2005;242(2):267–75. http://www.ncbi.nlm.nih.gov/pubmed/16041218. Accessed 17 April 2018.
  49. 49.
    Neuhaus P, Jonas S, Bechstein WO, et al. Extended resections for hilar cholangiocarcinoma. Ann Surg. 1999;230(6):808–18; discussion 819. http://www.ncbi.nlm.nih.gov/pubmed/10615936. Accessed 17 April 2018.
  50. 50.
    Shimizu H, Kimura F, Yoshidome H, et al. Aggressive surgical resection for hilar cholangiocarcinoma of the left-side predominance. Ann Surg. 2010;251(2):281–6.  https://doi.org/10.1097/SLA.0b013e3181be0085.PubMedGoogle Scholar
  51. 51.
    Wu X-S, Dong P, Gu J, et al. Combined portal vein resection for hilar cholangiocarcinoma: a meta-analysis of comparative studies. J Gastrointest Surg. 2013;17(6):1107–15.  https://doi.org/10.1007/s11605-013-2202-9.PubMedGoogle Scholar
  52. 52.
    Matsuyama R, Mori R, Ota Y, et al. Significance of vascular resection and reconstruction in surgery for hilar cholangiocarcinoma: with special reference to hepatic arterial resection and reconstruction. Ann Surg Oncol. 2016;23(Suppl 4):475–84.  https://doi.org/10.1245/s10434-016-5381-2.PubMedGoogle Scholar
  53. 53.
    Endo I, House MG, Klimstra DS, et al. Clinical significance of intraoperative bile duct margin assessment for hilar cholangiocarcinoma. Ann Surg Oncol. 2008;15(8):2104–12.  https://doi.org/10.1245/s10434-008-0003-2.PubMedGoogle Scholar
  54. 54.
    Ribero D, Amisano M, Lo Tesoriere R, Rosso S, Ferrero A, Capussotti L. Additional resection of an intraoperative margin-positive proximal bile duct improves survival in patients with hilar cholangiocarcinoma. Ann Surg. 2011;254(5):776–83.  https://doi.org/10.1097/SLA.0b013e3182368f85.PubMedGoogle Scholar
  55. 55.
    Abdalla EK, Hicks ME, Vauthey JN. Portal vein embolization: rationale, technique and future prospects. Br J Surg. 2001;88(2):165–75.  https://doi.org/10.1046/j.1365-2168.2001.01658.x.PubMedGoogle Scholar
  56. 56.
    McCormack L, Petrowsky H, Jochum W, Furrer K, Clavien P-A. Hepatic steatosis is a risk factor for postoperative complications after major hepatectomy. Ann Surg. 2007;245(6):923–30.  https://doi.org/10.1097/01.sla.0000251747.80025.b7.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Balzan S, Nagarajan G, Farges O, et al. Safety of liver resections in obese and overweight patients. World J Surg. 2010;34(12):2960–8.  https://doi.org/10.1007/s00268-010-0756-1.PubMedGoogle Scholar
  58. 58.
    Little SA, Jarnagin WR, DeMatteo RP, Blumgart LH, Fong Y. Diabetes is associated with increased perioperative mortality but equivalent long-term outcome after hepatic resection for colorectal cancer. J Gastrointest Surg. 6(1):88–94. http://www.ncbi.nlm.nih.gov/pubmed/11986023. Accessed 12 April 2018.
  59. 59.
    van den Broek MAJ, Olde Damink SWM, Dejong CHC, et al. Liver failure after partial hepatic resection: definition, pathophysiology, risk factors and treatment. Liver Int. 2008;28(6):767–80.  https://doi.org/10.1111/j.1478-3231.2008.01777.x.PubMedGoogle Scholar
  60. 60.
    Jarnagin WR, Gonen M, Fong Y, et al. Improvement in perioperative outcome after hepatic resection: analysis of 1803 consecutive cases over the past decade. Ann Surg. 2002;236(4):397–406.  https://doi.org/10.1097/01.sla.0000029003.66466.b3.
  61. 61.
    Vauthey J-N, Pawlik TM, Ribero D, et al. Chemotherapy regimen predicts steatohepatitis and an increase in 90-day mortality after surgery for hepatic colorectal metastases. J Clin Oncol. 2006;24(13):2065–72.  https://doi.org/10.1200/JCO.2005.05.3074.PubMedGoogle Scholar
  62. 62.
    Chapelle T, Op De Beeck B, Huyghe I, et al. Future remnant liver function estimated by combining liver volumetry on magnetic resonance imaging with total liver function on (99m)Tc-mebrofenin hepatobiliary scintigraphy: can this tool predict post-hepatectomy liver failure? HPB (Oxford). 2016;18(6):494–503.  https://doi.org/10.1016/j.hpb.2015.08.002.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Dinant S, de Graaf W, Verwer BJ, et al. Risk assessment of posthepatectomy liver failure using hepatobiliary scintigraphy and CT volumetry. J Nucl Med. 2007;48(5):685–92.  https://doi.org/10.2967/jnumed.106.038430.PubMedGoogle Scholar
  64. 64.
    de Graaf W, van Lienden KP, van den Esschert JW, Bennink RJ, van Gulik TM. Increase in future remnant liver function after preoperative portal vein embolization. Br J Surg. 2011;98(6):825–34.  https://doi.org/10.1002/bjs.7456.PubMedGoogle Scholar
  65. 65.
    Matsumata T, Kanematsu T, Yoshida Y, Furuta T, Yanaga K, Sugimachi K. The indocyanine green test enables prediction of postoperative complications after hepatic resection. World J Surg. 1987;11(5):678–81. http://www.ncbi.nlm.nih.gov/pubmed/2823492. Accessed 12 April 2018.
  66. 66.
    Imamura H, Sano K, Sugawara Y, Kokudo N, Makuuchi M. Assessment of hepatic reserve for indication of hepatic resection: decision tree incorporating indocyanine green test. J Hepatobiliary Pancreat Surg. 2005;12(1):16–22.  https://doi.org/10.1007/s00534-004-0965-9.PubMedGoogle Scholar
  67. 67.
    Okochi O, Kaneko T, Sugimoto H, Inoue S, Takeda S, Nakao A. ICG pulse spectrophotometry for perioperative liver function in hepatectomy. J Surg Res. 2002;103(1):109–13.  https://doi.org/10.1006/jsre.2001.6328.PubMedGoogle Scholar
  68. 68.
    Nagino M, Kamiya J, Nishio H, Ebata T, Arai T, Nimura Y. Two hundred forty consecutive portal vein embolizations before extended hepatectomy for biliary cancer. Ann Surg. 2006;243(3):364–72.  https://doi.org/10.1097/01.sla.0000201482.11876.14.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Isfordink CJ, Samim M, Braat MNGJA, et al. Portal vein ligation versus portal vein embolization for induction of hypertrophy of the future liver remnant: A systematic review and meta-analysis. Surg Oncol. 2017;26(3):257–67.  https://doi.org/10.1016/j.suronc.2017.05.001.PubMedGoogle Scholar
  70. 70.
    Olthof PB, Coelen RJS, Wiggers JK, et al. High mortality after ALPPS for perihilar cholangiocarcinoma: case-control analysis including the first series from the international ALPPS registry. HPB. 2017;19(5):381–7.  https://doi.org/10.1016/j.hpb.2016.10.008.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Ribero D, Abdalla EK, Madoff DC, Donadon M, Loyer EM, Vauthey J-N. Portal vein embolization before major hepatectomy and its effects on regeneration, resectability and outcome. Br J Surg. 2007;94(11):1386–94.  https://doi.org/10.1002/bjs.5836.PubMedGoogle Scholar
  72. 72.
    •• Shindoh J, Truty MJ, Aloia TA, et al. Kinetic growth rate after portal vein embolization predicts posthepatectomy outcomes: toward zero liver-related mortality in patients with colorectal liver metastases and small future liver remnant. J Am Coll Surg. 2013;216(2):201–9.  https://doi.org/10.1016/j.jamcollsurg.2012.10.018. This study advanced understanding of risk for morbidity and mortality related to post-hepatectomy liver failure by using kinetic growth rate (KGR) rather than standard volume measurements after portal vein embolization. A KGR of > 2% per week was associated with zero incidence of post-operative hepatic insufficiency or liver-related peri-operative mortality.
  73. 73.
    Policies—OPTN. https://optn.transplant.hrsa.gov/governance/policies/ (2018). Accessed 20 March 2018.
  74. 74.
    Robles R, Figueras J, Turrión VS, et al. Spanish experience in liver transplantation for hilar and peripheral cholangiocarcinoma. Ann Surg. 2004;239(2):265–71.  https://doi.org/10.1097/01.sla.0000108702.45715.81.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Becker NS, Rodriguez JA, Barshes NR, O’Mahony CA, Goss JA, Aloia TA. Outcomes analysis for 280 patients with cholangiocarcinoma treated with liver transplantation over an 18-year period. J Gastrointest Surg. 2008;12(1):117–22.  https://doi.org/10.1007/s11605-007-0335-4.PubMedGoogle Scholar
  76. 76.
    Panjala C, Nguyen JH, Al-Hajjaj AN, et al. Impact of neoadjuvant chemoradiation on the tumor burden before liver transplantation for unresectable cholangiocarcinoma. Liver Transpl. 2012;18(5):594–601.  https://doi.org/10.1002/lt.22462.PubMedGoogle Scholar
  77. 77.
    Duignan S, Maguire D, Ravichand CS, et al. Neoadjuvant chemoradiotherapy followed by liver transplantation for unresectable cholangiocarcinoma: a single-centre national experience. HPB (Oxford). 2014;16(1):91–8.  https://doi.org/10.1111/hpb.12082.PubMedGoogle Scholar
  78. 78.
    Rosen CB, Nagorney DM, Wiesner RH, Coffey RJ, LaRusso NF. Cholangiocarcinoma complicating primary sclerosing cholangitis. Ann Surg. 1991;213(1):21–5. http://www.ncbi.nlm.nih.gov/pubmed/1845927. Accessed 17 April 2018.
  79. 79.
    Morris-Stiff G, Bhati C, Olliff S, et al. Cholangiocarcinoma complicating primary sclerosing cholangitis: a 24-year experience. Dig Surg. 2008;25(2):126–32.  https://doi.org/10.1159/000128169.PubMedGoogle Scholar
  80. 80.
    Takakura WR, Tabibian JH, Bowlus CL. The evolution of natural history of primary sclerosing cholangitis. Curr Opin Gastroenterol. 2016;33(2):1.  https://doi.org/10.1097/MOG.0000000000000333.Google Scholar
  81. 81.
    Primrose JN, Rox R, Palmer DH, et al. Adjuvant capecitabine for biliary tract cancer: the BILCAP randomized study. J Clin Oncol. 2017; 35:15_suppl, 4006. http://ascopubs.org/doi/abs/10.1200/JCO.2017.35.15_suppl.4006.
  82. 82.
    Ben-Josef E, Guthrie KA, El-Khoueiry AB, et al. SWOG S0809: a phase II intergroup trial of adjuvant capecitabine and gemcitabine followed by radiotherapy and concurrent capecitabine in extrahepatic cholangiocarcinoma and gallbladder carcinoma. J Clin Oncol. 2015;33(24):2617–22.  https://doi.org/10.1200/JCO.2014.60.2219.PubMedGoogle Scholar
  83. 83.
    Stein A, Arnold D, Bridgewater J, et al. Adjuvant chemotherapy with gemcitabine and cisplatin compared to observation after curative intent resection of cholangiocarcinoma and muscle invasive gallbladder carcinoma (ACTICCA-1 trial)— a randomized, multidisciplinary, multinational phase III trial. BMC Cancer. 2015;15(1):564.  https://doi.org/10.1186/s12885-015-1498-0.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Malka D, Cervera P, Foulon S, et al. Gemcitabine and oxaliplatin with or without cetuximab in advanced biliary-tract cancer (BINGO): a randomised, open-label, non-comparative phase 2 trial. Lancet Oncol. 2014;15(8):819–28.  https://doi.org/10.1016/S1470-2045(14)70212-8.PubMedGoogle Scholar
  85. 85.
    El-Khoueiry AB, Rankin C, Siegel AB, et al. S0941: a phase 2 SWOG study of sorafenib and erlotinib in patients with advanced gallbladder carcinoma or cholangiocarcinoma. Br J Cancer. 2014;110(4):882–7.  https://doi.org/10.1038/bjc.2013.801.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Lee J, Park SH, Chang H-M, et al. Gemcitabine and oxaliplatin with or without erlotinib in advanced biliary-tract cancer: a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2012;13(2):181–8.  https://doi.org/10.1016/S1470-2045(11)70301-1.PubMedGoogle Scholar
  87. 87.
    Borbath I, Ceratti A, Verslype C, et al. Combination of gemcitabine and cetuximab in patients with advanced cholangiocarcinoma: a phase II study of the Belgian Group of Digestive Oncology. Ann Oncol. 2013;24(11):2824–9.  https://doi.org/10.1093/annonc/mdt337.PubMedGoogle Scholar
  88. 88.
    Leone F, Marino D, Cereda S, et al. Panitumumab in combination with gemcitabine and oxaliplatin does not prolong survival in wild-type KRAS advanced biliary tract cancer: a randomized phase 2 trial (Vecti-BIL study). Cancer. 2016;122(4):574–81.  https://doi.org/10.1002/cncr.29778.PubMedGoogle Scholar
  89. 89.
    Válek V, Kysela P, Kala Z, Kiss I, Tomášek J, Petera J. Brachytherapy and percutaneous stenting in the treatment of cholangiocarcinoma: a prospective randomised study. Eur J Radiol. 2007;62(2):175–9.  https://doi.org/10.1016/j.ejrad.2007.01.037.PubMedGoogle Scholar
  90. 90.
    Isayama H, Tsujino T, Nakai Y, et al. Clinical benefit of radiation therapy and metallic stenting for unresectable hilar cholangiocarcinoma. World J Gastroenterol. 2012;18(19):2364.  https://doi.org/10.3748/wjg.v18.i19.2364.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Jarnagin WR, Burke E, Powers C, Fong Y, Blumgart LH. Intrahepatic biliary enteric bypass provides effective palliation in selected patients with malignant obstruction at the hepatic duct confluence. Am J Surg. 1998;175(6):453–60. http://www.ncbi.nlm.nih.gov/pubmed/9645771. Accessed 3 April 2018.
  92. 92.
    Li H-M, Dou K-F, Sun K, Gao Z-Q, Li K-Z, Fu Y-C. Palliative surgery for hilar cholangiocarcinoma. Hepatobiliary Pancreat Dis Int. 2003;2(1):110–3. http://www.ncbi.nlm.nih.gov/pubmed/14607660. Accessed 4 April 2018.
  93. 93.
    Witzigmann H, Lang H, Lauer H. Guidelines for palliative surgery of cholangiocarcinoma. HPB. 2008;10(3):154–60.  https://doi.org/10.1080/13651820801992567.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Sangchan A, Kongkasame W, Pugkhem A, Jenwitheesuk K, Mairiang P. Efficacy of metal and plastic stents in unresectable complex hilar cholangiocarcinoma: a randomized controlled trial. Gastrointest Endosc. 2012;76(1):93–9.  https://doi.org/10.1016/j.gie.2012.02.048.PubMedGoogle Scholar
  95. 95.
    Ortner M. Photodynamic therapy for cholangiocarcinoma. J Hepatobiliary Pancreat Surg. 2001;8(2):137–9.  https://doi.org/10.1007/s0053410080137.PubMedGoogle Scholar
  96. 96.
    Steel AW, Postgate AJ, Khorsandi S, et al. Endoscopically applied radiofrequency ablation appears to be safe in the treatment of malignant biliary obstruction. Gastrointest Endosc. 2011;73(1):149–53.  https://doi.org/10.1016/j.gie.2010.09.031.PubMedGoogle Scholar
  97. 97.
    Zoepf T, Jakobs R, Arnold JC, Apel D, Riemann JF. Palliation of nonresectable bile duct cancer: improved survival after photodynamic therapy. Am J Gastroenterol. 2005;100(11):2426–30.  https://doi.org/10.1111/j.1572-0241.2005.00318.x.PubMedGoogle Scholar
  98. 98.
    Ortner MEJ, Caca K, Berr F, et al. Successful photodynamic therapy for nonresectable cholangiocarcinoma: a randomized prospective study. Gastroenterology. 2003;125(5):1355–63. http://www.ncbi.nlm.nih.gov/pubmed/14598251. Accessed 4 April 2018.
  99. 99.
    Yang J, Wang J, Zhou H, et al. Efficacy and safety of endoscopic radiofrequency ablation for unresectable extrahepatic cholangiocarcinoma: a randomized trial. Endoscopy. 2018.  https://doi.org/10.1055/s-0043-124870.Google Scholar
  100. 100.
    Moole H, Tathireddy H, Dharmapuri S, et al. Success of photodynamic therapy in palliating patients with nonresectable cholangiocarcinoma: a systematic review and meta-analysis. World J Gastroenterol. 2017;23(7):1278.  https://doi.org/10.3748/wjg.v23.i7.1278.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Strand DS, Cosgrove ND, Patrie JT, et al. ERCP-directed radiofrequency ablation and photodynamic therapy are associated with comparable survival in the treatment of unresectable cholangiocarcinoma. Gastrointest Endosc. 2014;80(5):794–804.  https://doi.org/10.1016/j.gie.2014.02.1030.PubMedGoogle Scholar
  102. 102.
    Patel J, Rizk N, Kahaleh M. Role of photodynamic therapy and intraductal radiofrequency ablation in cholangiocarcinoma. Best Pract Res Clin Gastroenterol. 2015;29(2):309–18.  https://doi.org/10.1016/j.bpg.2015.02.008.PubMedGoogle Scholar
  103. 103.
    Ben-David MA, Griffith KA, Abu-Isa E, et al. External-beam radiotherapy for localized extrahepatic cholangiocarcinoma. Int J Radiat Oncol. 2006;66(3):772–9.  https://doi.org/10.1016/j.ijrobp.2006.05.061.Google Scholar
  104. 104.
    Crane CH, Macdonald KO, Vauthey JN, et al. Limitations of conventional doses of chemoradiation for unresectable biliary cancer. Int J Radiat Oncol Biol Phys. 2002;53(4):969–74. http://www.ncbi.nlm.nih.gov/pubmed/12095564. Accessed 20 April 2018.
  105. 105.
    Méndez Romero A, de Man RA. Stereotactic body radiation therapy for primary and metastatic liver tumors: from technological evolution to improved patient care. Best Pract Res Clin Gastroenterol. 2016;30(4):603–16.  https://doi.org/10.1016/j.bpg.2016.06.003.PubMedGoogle Scholar
  106. 106.
    Tao R, Krishnan S, Bhosale PR, et al. Ablative radiotherapy doses lead to a substantial prolongation of survival in patients with inoperable intrahepatic cholangiocarcinoma: a retrospective dose response analysis. J Clin Oncol. 2016;34(3):219–26.  https://doi.org/10.1200/JCO.2015.61.3778.PubMedGoogle Scholar
  107. 107.
    Hong TS, Wo JY, Yeap BY, et al. Multi-institutional phase II study of high-dose hypofractionated proton beam therapy in patients with localized, unresectable hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Clin Oncol. 2016;34(5):460–8.  https://doi.org/10.1200/JCO.2015.64.2710.PubMedGoogle Scholar
  108. 108.
    Li H, Qin Y, Cui Y, Chen H, Hao X, Li Q. Analysis of the surgical outcome and prognostic factors for hilar cholangiocarcinoma: a Chinese experience. Dig Surg. 2011;28(3):226–31.  https://doi.org/10.1159/000327361.PubMedGoogle Scholar
  109. 109.
    Cheng Q-B, Yi B, Wang J-H, et al. Resection with total caudate lobectomy confers survival benefit in hilar cholangiocarcinoma of Bismuth type III and IV. Eur J Surg Oncol. 2012;38(12):1197–203.  https://doi.org/10.1016/j.ejso.2012.08.009.PubMedGoogle Scholar
  110. 110.
    de Jong MC, Marques H, Clary BM, et al. The impact of portal vein resection on outcomes for hilar cholangiocarcinoma. Cancer. 2012;118(19):4737–47.  https://doi.org/10.1002/cncr.27492.PubMedGoogle Scholar
  111. 111.
    Wahab MA, Sultan AM, Salah T, et al. Caudate Lobe resection with major hepatectomy for central cholangiocarcinoma: is it of value? Hepatogastroenterology. 2012;59(114):321–4.  https://doi.org/10.5754/hge11999.PubMedGoogle Scholar
  112. 112.
    Song SC, Choi DW, Kow AW-C, et al. Surgical outcomes of 230 resected hilar cholangiocarcinoma in a single centre. ANZ J Surg. 2013;83(4):268–74.  https://doi.org/10.1111/j.1445-2197.2012.06195.x.PubMedGoogle Scholar
  113. 113.
    Nagino M, Ebata T, Yokoyama Y, et al. Evolution of surgical treatment for perihilar cholangiocarcinoma. Ann Surg. 2013;258(1):129–40.  https://doi.org/10.1097/SLA.0b013e3182708b57.PubMedGoogle Scholar
  114. 114.
    Ebata T, Kosuge T, Hirano S, et al. Proposal to modify the International Union Against Cancer staging system for perihilar cholangiocarcinomas. Br J Surg. 2014;101(2):79–88.  https://doi.org/10.1002/bjs.9379.PubMedGoogle Scholar
  115. 115.
    Furusawa N, Kobayashi A, Yokoyama T, Shimizu A, Motoyama H, Miyagawa S. Surgical treatment of 144 cases of hilar cholangiocarcinoma without liver-related mortality. World J Surg. 2014;38(5):1164–76.  https://doi.org/10.1007/s00268-013-2394-x.PubMedGoogle Scholar
  116. 116.
    Cai W-K, Lin J-J, He G-H, Wang H, Lu J-H, Yang G-S. Preoperative serum CA19-9 levels is an independent prognostic factor in patients with resected hilar cholangiocarcinoma. Int J Clin Exp Pathol. 2014;7(11):7890–8. http://www.ncbi.nlm.nih.gov/pubmed/25550829. Accessed 19 April 2018.
  117. 117.
    Wang Y, Yang H, Shen C, Luo J. Surgical procedure and long-term survival of hilar cholangiocarcinoma. Int J Clin Exp Med. 2015;8(1):1122–8. http://www.ncbi.nlm.nih.gov/pubmed/25785102. Accessed 19 April 2018.
  118. 118.
    Ercolani G, Dazzi A, Giovinazzo F, et al. Intrahepatic, peri-hilar and distal cholangiocarcinoma: three different locations of the same tumor or three different tumors? Eur J Surg Oncol. 2015;41(9):1162–9.  https://doi.org/10.1016/j.ejso.2015.05.013.PubMedGoogle Scholar
  119. 119.
    Wang S-T, Shen S-L, Peng B-G, et al. Combined vascular resection and analysis of prognostic factors for hilar cholangiocarcinoma. Hepatobiliary Pancreat Dis Int. 2015;14(6):626–32. http://www.ncbi.nlm.nih.gov/pubmed/26663011. Accessed 19 April 2018.
  120. 120.
    Higuchi R, Ota T, Yazawa T, et al. Improved surgical outcomes for hilar cholangiocarcinoma: changes in surgical procedures and related outcomes based on 40 years of experience at a single institution. Surg Today. 2016;46(1):74–83.  https://doi.org/10.1007/s00595-015-1119-1.PubMedGoogle Scholar
  121. 121.
    Hu H-J, Mao H, Shrestha A, et al. Prognostic factors and long-term outcomes of hilar cholangiocarcinoma: a single-institution experience in China. World J Gastroenterol. 2016;22(8):2601.  https://doi.org/10.3748/wjg.v22.i8.2601.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Buettner S, Margonis GA, Kim Y, et al. Conditional probability of long-term survival after resection of hilar cholangiocarcinoma. HPB. 2016;18(6):510–7.  https://doi.org/10.1016/j.hpb.2016.04.001.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Spolverato G, Bagante F, Ethun CG, et al. Defining the chance of statistical cure among patients with extrahepatic biliary tract cancer. World J Surg. 2017;41(1):224–31.  https://doi.org/10.1007/s00268-016-3691-y.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Krasnick BA, Jin LX, Davidson JT, et al. Adjuvant therapy is associated with improved survival after curative resection for hilar cholangiocarcinoma: a multi-institution analysis from the US extrahepatic biliary malignancy consortium. J Surg Oncol. 2018;117(3):363–71.  https://doi.org/10.1002/jso.24836.PubMedGoogle Scholar
  125. 125.
    Bhutiani N, Scoggins CR, McMasters KM, et al. The impact of caudate lobe resection on margin status and outcomes in patients with hilar cholangiocarcinoma: a multi-institutional analysis from the US extrahepatic biliary malignancy consortium. Surgery. 2018;163(4):726–31.  https://doi.org/10.1016/j.surg.2017.10.028.PubMedGoogle Scholar
  126. 126.
    Abd ElWahab M, El Nakeeb A, Hanafy EE, et al. Predictors of long term survival after hepatic resection for hilar cholangiocarcinoma: a retrospective study of 5-year survivors. World J Gastrointest Surg. 2016;8(6):436.  https://doi.org/10.4240/wjgs.v8.i6.436.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Kang MJ, Jang J-Y, Chang J, et al. Actual long-term survival outcome of 403 consecutive patients with hilar cholangiocarcinoma. World J Surg. 2016;40(10):2451–9.  https://doi.org/10.1007/s00268-016-3551-9.PubMedGoogle Scholar
  128. 128.
    Giuliante F, Ardito F, Guglielmi A, et al. Association of lymph node status with survival in patients after liver resection for hilar cholangiocarcinoma in an italian multicenter analysis. JAMA Surg. 2016;151(10):916.  https://doi.org/10.1001/jamasurg.2016.1769.PubMedGoogle Scholar
  129. 129.
    Kimura N, Young AL, Toyoki Y, et al. Radical operation for hilar cholangiocarcinoma in comparable Eastern and Western centers: outcome analysis and prognostic factors. Surgery. 2017;162(3):500–14.  https://doi.org/10.1016/j.surg.2017.03.017.PubMedGoogle Scholar
  130. 130.
    Li B, Xiong X-Z, Zhou Y, et al. Prognostic value of lymphovascular invasion in Bismuth-Corlette type IV hilar cholangiocarcinoma. World J Gastroenterol. 2017;23(36):6685–93.  https://doi.org/10.3748/wjg.v23.i36.6685.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Alexander V. Fisher
    • 1
  • Sean M. Ronnekleiv-Kelly
    • 1
    • 2
  1. 1.Department of Surgery, Section of Surgical OncologyUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA
  2. 2.H4/710 Clinical Science CenterMadisonUSA

Personalised recommendations