Advertisement

Optimising Medical Management in CRS

  • Viktoria Grammatopoulou
  • Coimbatore V. Praveena
  • Vishnu S. SunkaraneniEmail author
RHINOLOGY: Chronic Rhinosinusitis (C Philpott, Section Editor)
Part of the following topical collections:
  1. Topical Collection on RHINOLOGY: Chronic Rhinosinusitis
  2. Topical Collection on RHINOLOGY: Chronic Rhinosinusitis

Abstract

Purpose of Review

We assess the literature on different medical treatment options and their effectiveness in chronic rhinosinusitis (CRS).

Recent Findings

Although there is significant overlap in the management of CRS, not all therapies are equally effective within CRS phenotypes.

Summary

CRS is one of the most common chronic health problems affecting a large proportion of adult population and generating significant economic implications. Despite an unclear pathophysiology of this complex disorder, it is widely recognised that surgery alone does not resolve the chronic inflammation and that ongoing medical treatment remains the key to the successful management of patients with CRS.

Keywords

Chronic rhinosinusitis Medical management Endoscopic sinus surgery Saline irrigations Aspirin desensitisation Surfactants Immunotherapy 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

The article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Fokkens WJ, Lund VJ, Mullol J, et al. European position paper on rhinosinusitis and nasal polyps 2012. Rhinol Suppl. 2012;3(23):3 p preceding table of contents: 1–298.Google Scholar
  2. 2.
    Hastan D, Fokkens WJ, Bachert C, et al. Chronic rhinosinusitis in Europe—an underestimated disease. A GA2LEN study. Allergy. 2011;66:1216–33.CrossRefPubMedGoogle Scholar
  3. 3.
    Rudmik L, Smith TL, Schlosser RJ, et al. Productivity costs in patients with refractory chronic rhinosinusitis. Laryngoscope. 2014;124(9):2007–12.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Murphy MP, Fishman P, Short SO, Sullivan SD, Yueh B, Weymuller EA Jr. Health care utilization and cost among adults with chronic rhinosinusitis enrolled in a health maintenance organization. Otolaryngol Head Neck Surg. 2002;127(5):367–76.CrossRefPubMedGoogle Scholar
  5. 5.
    van Agthoven M, et al. Cost analysis of regular and filgrastim treatment in patients with refractory chronic rhinosinusitis. Rhinology. 2002;40(2):69–74.PubMedGoogle Scholar
  6. 6.
    Rosenfeld RM, Piccirillo JF, Chandrasekhar SS, et al. Clinical practice guideline (update): adult sinusitis executive summary. Otolaryngol Head Neck Surg. 2015;152:598–609.CrossRefPubMedGoogle Scholar
  7. 7.
    Rudmik L, Soler ZM. Medical therapies for adult chronic sinusitis: a systemic review. JAMA. 2015;314:926–39.CrossRefPubMedGoogle Scholar
  8. 8.
    Schwartz JS, Tajudeen BA, Cohen NA. Medical management of chronic rhinosinusits—an update. Expert Rev Clin Pharmacol. 2016;9:5695–704.CrossRefGoogle Scholar
  9. 9.
    Rizk H. Role of aspirin desensitization in the management of chronic rhinosinusitis. Curr Opin Otolaryngol Head Neck Surg. 2011;19:210–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Rudmik L, Soler ZM, Orlandi RR, et al. Early postoperative care following endoscopic sinus surgery: an evidence-based review with recommendations. Int Forum Allergy Rhinol. 2011;1:417–30.CrossRefPubMedGoogle Scholar
  11. 11.
    Boumpas DT, Chrousos GP, Wilder RL, et al. Glucocorticoid therapy for immune-mediated diseases: basic and clinical correlates. Ann Intern Med. 1993;119:1198–208.CrossRefPubMedGoogle Scholar
  12. 12.
    Mullol J, Obando A, et al. Corticosteroid treatment in CRS: the possibilities and the limits. Immunol Allergy Clin N Am. 2009;29:657–68.CrossRefGoogle Scholar
  13. 13.
    Head K, Chong LY, Hopkins C, Philpott C, Schilder AGM, Burton MJ. Short-course oral steroids as an adjunct therapy for chronic rhinosinusitis. Cochrane Database Syst Rev. 2016.Google Scholar
  14. 14.
    Head K, Chong LY, Hopkins C, Philpott C, Burton MJ, Schilder AGM. Short-course oral steroids alone for chronic rhinosinusitis. Cochrane Database Syst Rev. 2016.Google Scholar
  15. 15.
    Poetker DM, Jakubowski LA, Lal D, et al. Oral corticosteroids in the management of adult chronic rhinosinusitis with and without nasal polyps: an evidence-based review with recommendations. Int Forum Allergy Rhinol. 2013;3:104–20.CrossRefPubMedGoogle Scholar
  16. 16.
    Howard BE, Lai D. Oral steroid therapy in chronic rhinosinusitis with and without nasal polyposis. Curr Allergy Asthma Rep. 2013;13(2):236–43.CrossRefPubMedGoogle Scholar
  17. 17.
    Philpott C, Hopkins C, Erskine S, Kumar N, Robertson A, Farboud A, et al. The burden of revision sinonasal surgery in the UK—data from the Chronic Rhinosinusitis Epidemiology Study (CRES): a cross-sectional study. BMJ Open. 2015;5(4):e006680.  https://doi.org/10.1136/bmjopen-2014-006680.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Schubert MS. Allergic fungal sinusitis: pathophysiology, diagnosis and management. Med Mycol. 2009;47(Suppl 1):S324–30.CrossRefPubMedGoogle Scholar
  19. 19.
    Gan EC, Thamboo A, Rudmik L, et al. Medical management of allergic fungal rhinosinusitis following endoscopic sinus surgery: an evidence-based review and recommendations. Int Forum Allergy Rhinol. 2014;4:702–15.CrossRefPubMedGoogle Scholar
  20. 20.
    Poetker DM, Smith TL. What rhinologists and allergists should know about the medico-legal implications of corticosteroid use: a review of the literature. Int Forum Allergy Rhinol. 2012;2:95–103.CrossRefPubMedGoogle Scholar
  21. 21.
    Bonfils P, Halimi P, Malinvaud D. Adrenal suppression and osteoporosis after treatment of nasal polyposis. Acta Otolaryngol. 2006;126:1195–200.CrossRefPubMedGoogle Scholar
  22. 22.
    Stuart FA, Segal TY, Keady S. Adverse psychological effects of corticosteroids in children and adolescents. Arch Dis Child. 2005;90:500–6.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chong LY, Head K, Hopkins C, Philpott C, Schilder AGM, Burton MJ. Intranasal steroids versus placebo or no intervention for chronic rhinosinusitis. Cochrane Database Syst Rev. 2016.Google Scholar
  24. 24.
    Chong LY, Head K, Hopkins C, Philpott C, Burton MJ, Schilder AGM. Different types of intranasal steroids for chronic rhinosinusitis. Cochrane Database Syst Rev. 2016.Google Scholar
  25. 25.
    Man LX, Farhood Z, Luong A, et al. The effect of intranasal fluticasone propionate irrigations on salivary cortisol, intraocular pressure and posterior subcapsular cataracts in postsurgical CRS patients. Int Forum Allergy Rhinol. 2013;3:953–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Welch KC, Thaler ER, Doghramji LL, et al. The effects of serum and urinary cortisol levels of topical intranasal irrigations with budesonide added to saline in patients with recurrent polyposis after endoscopic sinus surgery. Am J Rhinol Allergy. 2010;24:26–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Sastre J, Mosges R. Local and systemic safety of intranasal corticosteroids. J Investig Allergol Clin Immunol. 2012;22:1–12.PubMedGoogle Scholar
  28. 28.
    Ahmadi N, Snidvongs K, Kalish L, et al. Intranasal corticosteroids do not affect intraocular pressure or lens opacity: a systemic review of controlled trials. Rhinology. 2015;53:290–302.CrossRefPubMedGoogle Scholar
  29. 29.
    Manji J, Singh G, Okpaleke C, et al. Safety of long-term intranasal budesonide delivered via the mucosal atomization device for chronic rhinosinusitis. Int Forum Allergy Rhinol. 2017;7(5):488–93.CrossRefPubMedGoogle Scholar
  30. 30.
    Allen DB. Systemic effects of intranasal steroids: an endocrinologist’s perspective. J Allergy Clin Immunol. 2000;106(4 suppl):S179–90.CrossRefPubMedGoogle Scholar
  31. 31.
    Murphy K, Uryniak T, Simpson B, et al. Growth velocity in children with perennial allergic rhinitis treated with budesonide aqueous nasal spray. Ann Allergy Asthma Immunol. 2006;96:723–30.CrossRefPubMedGoogle Scholar
  32. 32.
    Schenkel EJ, Skoner DP, Bronsky EA, et al. Absence of growth retardation in children with perennial allergic rhinitis after one year of treatment with mometasone furoate aqueous nasal spray. Pediatrics. 2000;105:E22.CrossRefPubMedGoogle Scholar
  33. 33.
    Skoner DP, Gentile D, Angelini B, et al. The effects of intranasal triamcinolone acetonide and intranasal fluticasone propionate on short-term bone growth and HPA axis in children with allergic rhinitis. Ann Allergy Asthma Immunol. 2003;90:56–62.CrossRefPubMedGoogle Scholar
  34. 34.
    Skoner DP, Maspero J, Banerji D. Ciclesonide Pediatric Growth Study Group: assessment of the long-term safety of inhaled ciclesonide on growth in children with asthma. Pediatrics. 2008;121:e1–e14.CrossRefPubMedGoogle Scholar
  35. 35.
    Verkerk MM, Bhatia D, Rimmer J, et al. Intranasal steroids and the myth of mucosal atrophy: a systematic review of original histological assessments. Am J Rhinol Allergy. 2015;29:3–18.CrossRefPubMedGoogle Scholar
  36. 36.
    Dijkstra MD, Ebbens FA, Poublon RM, Fokkens WJ. Fluticasone propionate aqueous nasal spray does not influence the recurrence rate of CRS and nasal polyps 1 year after functional endoscopic sinus surgery. Clin Exp Allergy. 2004;34:1395–400.CrossRefPubMedGoogle Scholar
  37. 37.
    Small CB, Hernandez J, Reyes A, et al. Efficacy and safety of mometasone furoate nasal spray in nasal polyposis. J Allergy Clin Immunol. 2005;116:1275–81.CrossRefPubMedGoogle Scholar
  38. 38.
    Oakley GM, Harvey RJ. Topical steroids. Adv Otorhinolaryngol. 2016;79:121–30.PubMedGoogle Scholar
  39. 39.
    Lipworth BJ, Jackson CM. Safety of inhaled and intranasal corticosteroids: lessons for the new millennium. Drug Saf. 2000;23:11–33.CrossRefPubMedGoogle Scholar
  40. 40.
    Thomas WW 3rd, Harvey RJ, Rudmik L, et al. Distribution of topical agents to the paranasal sinuses: an evidence-based review with recommendations. Int Forum Allergy Rhinol. 2013;3(9):691–703.CrossRefPubMedGoogle Scholar
  41. 41.
    Kalish L, Snidvongs K, Sivasubramaniam R, Cope D, Harvey RJ. Topical steroids for nasal polyps. Cochrane Database Syst Rev. 2016;4:CD006549.PubMedGoogle Scholar
  42. 42.
    • Harvey RJ, Snidvongs K, Kalish LH, et al. Corticosteroid nasal irrigations are more effective than simple sprays in a randomized double-blinded placebo-controlled trial for chronic rhinosinusitis after sinus surgery. Int Forum Allergy Rhinol. 2018;8(4):461–70. This high quality study reported greater improvement in nasal blockage, on LMS, VAS scores and mLKS in corticosteroid nasal irrigation group versus simple nasal spray group after nasal surgery. Google Scholar
  43. 43.
    Smith KA, French G, Mechor B, et al. Safety of long-term high-volume sinonasal budesonise irrigations for chronic rhinosinusitis. Int Forum Allergy Rhinol. 2016;6:228–32.CrossRefPubMedGoogle Scholar
  44. 44.
    Chong LY, Head K, Hopkins C, Philpott C, Glew S, Scadding G, et al. Saline irrigation for chronic rhinosinusitis (review). Cochrane Database Syst Rev. 2016.Google Scholar
  45. 45.
    Culic O, Erakovic V, Parnham MJ. Anti-inflammatory effects of macrolide antibiotics. Eur J Pharmacol. 2001;429(1–3):209–29.CrossRefPubMedGoogle Scholar
  46. 46.
    Khan AA, Slifer TR, Araujo FG, et al. Effect of clarithromycin and azithromycin on production of cytokines by human monocytes. Int J Antimicrob Agents. 1999;11(2):121–32.CrossRefPubMedGoogle Scholar
  47. 47.
    Suzuki H, Shimomura A, Ikeda K, et al. Inhibitory effect of macrolides on interleukin-8 secretion from cultured human nasal epithelial cells. Laryngoscope. 1997;107(12 Pt1):1661–6.CrossRefPubMedGoogle Scholar
  48. 48.
    Tamaoki J, Kadota J, Takizawa H. Clinical implications of the immunomodulatory effects of macrolides. Am J Med. 2004;117(Suppl 9A):5S–11S.PubMedGoogle Scholar
  49. 49.
    Cervin A, Wallwork B. Efficacy and safety of long-term antibiotics(macrolides) for the treatment of chronic rhinosinusitis. Curr Allergy Rep. 2014;14(3):416.CrossRefGoogle Scholar
  50. 50.
    Tamaoki J. The effects of macrolides on inflammatory cells. Chest. 2004;125(2 Suppl):41S–50S quiz 51S.CrossRefPubMedGoogle Scholar
  51. 51.
    Tagaya E, Tamaoki J, Kondo M, Nagai A. Effect of a short course of clarithromycin therapy on sputum production in patients with chronic airway hypersecretion. Chest. 2002;122(1):213–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Hoffmann N, Lee B, Hentzer M, et al. Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr(−/−) mice. Antimicrob Agents Chemother. 2007;51(10):3677–87.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Tateda K, Comte R, Pechere JC, et al. Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2001;45(6):1930–3.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Parnham MJ, Eracovic Haber V, Giamarellos-Bourboulis EJ, et al. Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther. 2014;143(2):225–45.CrossRefPubMedGoogle Scholar
  55. 55.
    Fang AF, Palmer JN, Chiu AG, et al. Pharmacokinetics of azithromycin in plasma and sinus mucosal tissue following administration of extended-release or immediate-release formulations in adult patients with chronic rhinosinusitis. Int J Antimicrob Agents. 2009;34(1):67–71.CrossRefPubMedGoogle Scholar
  56. 56.
    Lode H, Borner K, Koeppe P, et al. Azithromycin—review of key chemical, pharmacokinetic and microbiological features. J Antimicrob Chemother. 1996;37(Suppl C):1–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Pessayre D, Larrey D, Funck-Brentano C, et al. Drug interactions and hepatitis produced by some macrolide antibiotics. J Antimicrob Chemother. 1985;16(Suppl A):181–94.CrossRefPubMedGoogle Scholar
  58. 58.
    Svanstrom H, Pasternak B, Hviid A. Use of clarithromycin and roxithromycin and risk of cardiac death: cohort study. BMJ. 2014;349:g 4930.CrossRefGoogle Scholar
  59. 59.
    Albert RK, Schuller JL, Network CCR. Macrolide antibiotics and the risk of cardiac arrhythmias. Am J Respir Crit Care Med. 2014;189(10):1173–80.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Wong AYS, Chan EW, Anand S, Worsley AJ, Wong ICK. Managing cardiovascular risk of macrolides: systematic review and meta-analysis. Drug Saf. 2017;40(8):663–77.  https://doi.org/10.1007/s40264-017-0533-2.CrossRefPubMedGoogle Scholar
  61. 61.
    Wallwork B, Coman W, Mackay-Sim A, Greiff L, Cervin A. A double-blinded, randomized, placebo-controlled trial of macrolide in the treatment of chronic rhinosinusitis. Laryngoscope. 2006;116(2):189–93.CrossRefPubMedGoogle Scholar
  62. 62.
    Cervin A, Kalm O, Sandkull P, Lindberg S. One year low-dose erythromycin treatment of persistent chronic sinusitis after sinus surgery: clinical outcome and effects on mucociliary parameters and nasal nitric oxide. Otolaryngol Head Neck Surg. 2002;126(5):481–9.CrossRefPubMedGoogle Scholar
  63. 63.
    Ragab SM, Lund VJ, Scadding G. Evaluation of the medical and surgical treatment of chronic rhinosinusitis: a prospective, randomized, controlled trial. Laryngoscope. 2004;114(5):923–30.CrossRefPubMedGoogle Scholar
  64. 64.
    Soler ZM, Oyer SL, Kern RC, et al. Antimicrobials and chronic rhinosinusitis with or without polyposis in adults: an evidenced-based review with recommendations. Int Forum Allergy Rhinol. 2013;3(1):31–47.CrossRefPubMedGoogle Scholar
  65. 65.
    Orlandi RR, Kingdom TT, Hwang PH, et al. International consensus statement on allergy and rhinology: rhinosinusitis. Int Forum Allergy Rhinol. 2016;6(Suppl 1):S22–209.PubMedGoogle Scholar
  66. 66.
    Wen W, Liu W, Zhang L, et al. Increased neutrophilia in nasal polyps reduces the response to oral corticosteroid therapy. J Allergy Clin Immunol. 2012;129(6):1522–8 e1525.CrossRefPubMedGoogle Scholar
  67. 67.
    Snidvongs K, Pratt E, Chin D, et al. Corticosteroid nasal irrigations after endoscopic sinus surgery in the management of chronic rhinosinusitis. Int Forum Allergy Rhinol. 2012;2(5):415–21.CrossRefPubMedGoogle Scholar
  68. 68.
    Haruna S, Shimada C, Ozawa M, et al. A study of poor responders for long-term, low-dose macrolide administration for chronic sinusitis. Rhinology. 2009;47(1):66–71.PubMedGoogle Scholar
  69. 69.
    Head K, Chong L, Piromchai P, Hopkins C, Philpott C, Schilder AGM, et al. Systemic and topical antibiotics for chronic rhinosinusitis. Cochrane Database Syst Rev. 2016;(4):CD011994.  https://doi.org/10.1002/14651858.CD011994.pub2.
  70. 70.
    Lasso A, Masoudian P, Quinn JG, Cowan J, Labajian V, Bonaparte JP, et al. Long-term low-dose macrolides for chronic rhinosinusitis in adults—a systematic review of the literature. Clin Otolaryngol. 2017;42(3):637–50.  https://doi.org/10.1111/coa.12787.CrossRefPubMedGoogle Scholar
  71. 71.
    Snidvongs K, Lam M, Sacks R, et al. Structured histopathology profiling of chronic rhinosinusitis in routine practice. Int Forum Allergy Rhinol. 2012;2(5):376–85.CrossRefPubMedGoogle Scholar
  72. 72.
    Bachert C, Akdis CA. Phenotypes and emerging endotypes of chronic rhinosinusitis. J Allergy Clin Immunol Pract. 2016;4(4):621–8.CrossRefPubMedGoogle Scholar
  73. 73.
    Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med. 2012;18(5):716–25.CrossRefPubMedGoogle Scholar
  74. 74.
    Fokkens WJ, Lund VJ, Mullol J, et al. EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology. 2012;50(1):1–12.CrossRefPubMedGoogle Scholar
  75. 75.
    Bewick J, Ahmed S, Carrie S, Hopkins C, Sama A, Sunkaraneni V, et al. The value of a feasibility into long-term macrolide therapy in chronic rhinosinusitis. Clin Otolaryngol. 2017;42:131–8.CrossRefPubMedGoogle Scholar
  76. 76.
    Wallwork B, Coman W, Mackay-Sim A, et al. A double-blind, randomized, placebo-controlled trial of macrolide in the treatment of chronic rhinosinusitis. Laryngoscope. 2016;116:189–93.CrossRefGoogle Scholar
  77. 77.
    Videler WJ, Badia L, Harvey RJ, et al. Lack of efficacy of long-term, low-dose azithromycin in chronic rhinosinusitis: a randomized controlled trial. Allergy. 2011;66:1457–68.CrossRefPubMedGoogle Scholar
  78. 78.
    Oakley GM, Christensen JM, Sacks R, Earls P, Harvey RJ. Characteristics of macrolide responders in persistent post-surgical rhinosinusitis. Rhinology. 2018;56(2):111–7.CrossRefPubMedGoogle Scholar
  79. 79.
    Suzuki H, Ikeda K, Honma R, et al. Prognostic factors of chronic rhinosinusitis under long-term low-dose macrolide therapy. ORL J Otorhinolaryngol Relat Spec. 2000;62(3):121–7.CrossRefPubMedGoogle Scholar
  80. 80.
    Wallwork B, Coman W, Feron F, Mackay-Sim A. Clarithromycin and prednisolone inhibit cytokine production in chronic rhinosinusitis. Laryngoscope. 2002;112:1827–30.CrossRefPubMedGoogle Scholar
  81. 81.
    Fan Y, Xu R, Hong H, et al. High and low doses of clarithromycin treatment are associated with different clinical efficacies and immunomodulatory properties in chronic rhinosinusitis. J Laryngol Otol. 2014;128:236–41.CrossRefPubMedGoogle Scholar
  82. 82.
    Lennard CM, Mann EA, Sun LL, Chang AS, Bolger WE. Interleukin-1 beta, interleukin-5, interleukin-6, interleukin-8, and tumor necrosis factor-alpha in chronic sinusitis: response to systemic corticosteroids. Am J Rhinol. 2000;14:367–73.CrossRefPubMedGoogle Scholar
  83. 83.
    Wright E, Frenkel S, Al-Ghamdi K, et al. Interleukin-4, interleukin-5, and granulocyte-macrophage colony-stimulating factor receptor expression in chronic sinusitis and response to topical steroids. Otolarybgol Head Neck Surg. 1998;118:490–5.Google Scholar
  84. 84.
    Rosenblatt JE, Barrett JE, Brodie JL, et al. Comparison of in vitro activity and clinical pharmacology of doxycycline with other tetracyclines. Antimicrob Agents Chemother. 1966;6:134–41.PubMedGoogle Scholar
  85. 85.
    Van Zele T, Gevaert P, Holtappels G, et al. Oral steroids and doxycycline: two different approaches to treat nasal polyps. J Allergy Clin Immunol. 2010;125:1069–76.CrossRefPubMedGoogle Scholar
  86. 86.
    Pezato R, Voegels RL, Pinto Bezerra TF, et al. Mechanical dysfunction in the mucosal oedema formation of patients with nasal polyps. Rhinology. 2014;52(2):162–6.CrossRefPubMedGoogle Scholar
  87. 87.
    Yancey RJ, Sanchez MS, Ford CW. Activity of antibiotics against Staphylococcus aureus within polymorphonuclear neutrophils. Eur J Clin Microbiol Infect Dis. 1991;10(2):107–13.CrossRefPubMedGoogle Scholar
  88. 88.
    Pinto Bezerra Soter AC, Pinto Bezerra TF, et al. Prospective open-label evaluation of long-term low-dose doxycycline for difficult-to-treat chronic rhinosinusitis with nasal polyps. Rhinology. 2017;55:175–80.CrossRefPubMedGoogle Scholar
  89. 89.
    Chiu AG, Chen B, Palmer JN, et al. Safety evaluation of sinus surfactant solution on respiratory cilia function. Int Forum Allergy Rhinol. 2011;1:280–3.CrossRefPubMedGoogle Scholar
  90. 90.
    Chiu AG, Palmer JN, Woodworth BA, et al. Baby shampoo nasal irrigations for the symptomatic post-functional endoscopic sinus surgery patient. Am J Rhinol. 2008;22:34–7.CrossRefPubMedGoogle Scholar
  91. 91.
    Issacs S, Fakhri S, Luong A, et al. The effect of dilute baby shampoo on nasal mucociliary clearance in health subjects. Am J Rhinol Allergy. 2011;25:e27–9.CrossRefGoogle Scholar
  92. 92.
    Farag AA, Deal AM, McKinney KA, et al. Single-blind randomized controlled trial of surfactant vs hypertonic saline irrigation following endoscopic endonasal surgery. Int Forum Allergy Rhinol. 2012.  https://doi.org/10.1002/alr.21116.
  93. 93.
    Kofonow JM, Adappa ND. In vitro antimicrobial activity of SinuSurf. Otorhinolaryngol Relat Spec. 2012;74:179–84.CrossRefGoogle Scholar
  94. 94.
    Atkins J. NeilMed’s SinuSurf additive causes loss of sense of smell. San Antonio: Texas Sinus Center; 2011.Google Scholar
  95. 95.
    Cooper RA, Molan PC, Harding KG. The sensitivity to honey of gram-positive cocci of clinical significance isolated from wounds. J Appl Microbiol. 2002;93:857–63.CrossRefPubMedGoogle Scholar
  96. 96.
    Jervis-Bardy J, Foreman A, Bray S, et al. Methylglyoxal-infused honey mimics the anti-Staphylococcus aureus biofilm activity of manuka honey: potential implication in chronic rhinosinusitis. Laryngoscope. 2011;121:1104–7.CrossRefPubMedGoogle Scholar
  97. 97.
    Lu J, Turnbull L, Burke CM, et al. Manuka-type honeys can eradicate biofilms produced by Staphylococcus aureus strains with different biofilm-forming abilities. PeerJ. 2014;2:e326.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Kilty SJ, Duval M, Chan FT, et al. Methylglyoxal: (active agent of manuka honey) in vitro activity against bacterial biofilms. Int Forum Allergy Rhinol. 2011;1:348–50.CrossRefPubMedGoogle Scholar
  99. 99.
    Wong D, Alandejani T, Javer AR. Evaluation of manuka honey in the management of allergic fungal rhinosinusitis. J Otolaryngol Head Neck Surg. 2011;40(2):E19–21.PubMedGoogle Scholar
  100. 100.
    Suh JD, Cohen NA, Palmer JN. Biofilms in chronic rhinosinusitis. Curr Opin Otolaryngol Head Neck Surg. 2010;18:27–31.CrossRefPubMedGoogle Scholar
  101. 101.
    Suh JD, Ramakrishnan V, Palmer JN. Biofilms. Otolaryngol Clin N Am. 2010;43:521–30 viii.CrossRefGoogle Scholar
  102. 102.
    Sanderson AR, Leid JG, Hunsaker D. Bacterial biofilms on the sinus mucosa of human subjects with chronic rhinosinusitis. Laryngoscope. 2006;116:1121–6.CrossRefPubMedGoogle Scholar
  103. 103.
    Prince AA, Steiger JD, Khalid AN, et al. Prevalence of biofilm-forming bacteria in chronic rhinosinusitis. Am J Rhinol. 2008;22:239–45.CrossRefPubMedGoogle Scholar
  104. 104.
    Foreman A, Psaltis AJ, Tan LW, Wormald PJ. Characterization of bacterial and fungal biofilms in chronic rhinosinusitis. Am J Rhinol. 2009;23:556–61.Google Scholar
  105. 105.
    Cooper RA, Molan PC, Harding KG. Antibacterial activity of honey against strains of Staphilococcus aureus from infected wounds. J R Soc Med. 1999;92:283–5.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Lusby PE, Coombes AL, Wilkinson JM. Bactericidal activity of different honeys against pathogenic bacteria. Arch Med Res. 2005;36:464–7.CrossRefPubMedGoogle Scholar
  107. 107.
    Molan PC. The evidence supporting the use of honey as a wound dressing. Int J Low Extrem Wounds. 2006;5:40–54.CrossRefPubMedGoogle Scholar
  108. 108.
    Lu J, Turnbull L, Burke CM, et al. Manuka-type honeys can eradicate biofilms produced by Staphylococcus aureus strains with different biofilms-forming abilities. PeerJ. 2014;2:e326.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Alandejani T, Marsan J, Ferris W, et al. Effectiveness of honey on Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Otolaryngol Head Neck Surg. 2009;141:114–8.CrossRefPubMedGoogle Scholar
  110. 110.
    Kilty SJ, AlMutairi D, Duval M, et al. Manuka honey: histological effect on respiratory mucosa. Am J Rhinol. 2010;24:e63–6.CrossRefGoogle Scholar
  111. 111.
    Lee V, Humphreys I, Purcell P, et al. Manuka honey sinus irrigation for the treatment of chronic rhinosinusitis: a randomized controlled trial. Int Forum Allergy Rhinol. 2017;7(4).Google Scholar
  112. 112.
    Manji J, Thamboo A, Sunkaraneni VS, Singh A, Tebbutt S, Garnis G, Javer A. The association of Leptospermum honey with cytokine expression in the sinonasal epithelium of chronic rhinosinusitis patients. WJO. Available online 7 September 2018.Google Scholar
  113. 113.
    Slavin J. The role of cytokines in wound healing. J Pathol. 1996;178:5–10.CrossRefPubMedGoogle Scholar
  114. 114.
    Shahangian A, Schlosser RJ. Role of vitamin D in pathogenesis of chronic sinusitis with nasal polyposis. Adv Otorhinolaryngol. 2016;79:86–90.PubMedGoogle Scholar
  115. 115.
    Sugimoto I, Hirakawa K, Ishino T, Takeno S, Yajin K. Vitamin D3, vitamin K2 and warfarin regulate bone metabolism in human paranasal sinus bones. Rhinology. 2007;45:208–13.PubMedGoogle Scholar
  116. 116.
    Sultan B, Ramanathan M, et al. Sinonasal epithelial cells synthesize active vitamin D, augmenting host innate immune function. Int Forum Allergy Rhinol. 2013;3:26–30.CrossRefPubMedGoogle Scholar
  117. 117.
    Mulligan JK, White DR, et al. Vitamin D3 deficiency increases sinus mucosa dendritic cells in pediatric chronic rhinosinusitis with nasal polyps. Otolaryngol Head Neck Surg. 2012;147:773–81.CrossRefPubMedGoogle Scholar
  118. 118.
    Szczeklik A, Nizankowska-Mogilnicka E, Sanak M, et al. Hypersensitivity to aspirin and non-steroidal anti-inflammatory drugs. Middleton’s allergy: principles and practice. 7th ed. New York: Mosby; 2009. p. 1227–40.Google Scholar
  119. 119.
    Stevenson DD. Aspirin and NSAID sensitivity. Immunol Allergy Clin N Am. 2004;24:491–505.CrossRefGoogle Scholar
  120. 120.
    •• Philpott CM, Erskine S, Hopkins C, Kumar N, Anari S, Kara N, et al. Prevalence of asthma, aspirin sensitivity and allergy in chronic rhinosinusitis: data from the UK National Chronic Rhinosinusitis Epidemiology Study. Respir Res. 2018;19:129. This study includes data from the UK National Chronic Rhinosinusitis Epidemiology and evaluates the prevalence of asthma and allergy in CRS patients. Google Scholar
  121. 121.
    Szczeklik A, Nizankowska E, Duplaga M. Natural history of aspirin-induced asthma. AIANE investigators. European network on aspirin-induced asthma. Eur Respir J. 2000;16:432–6.  https://doi.org/10.1034/j.1399-3003.2000.016003432.x.CrossRefPubMedGoogle Scholar
  122. 122.
    Stevenson DD, Simon RA. Selection of patients for aspirin desensitization treatment. J Allergy Clin Immunol. 2006;118:801–4.CrossRefPubMedGoogle Scholar
  123. 123.
    Macy E, Bernstein JA, Castells MC, et al. Aspirin challenge and desensitization for aspirin-exacerbated respiratory disease: a practice paper. Ann Allergy Asthma Immunol. 2007;98:172–4.CrossRefPubMedGoogle Scholar
  124. 124.
    Woessner KM, White AA. Evidence-based approach to aspirin desensitization in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2014;133(1):286–7 e1–9.CrossRefPubMedGoogle Scholar
  125. 125.
    Williams AN, Simon RA, et al. The relationship between historical aspirin-induced asthma and severity of asthma induced during oral aspirin challenges. J Allergy Clin Immunol. 2007;120:273–7.CrossRefPubMedGoogle Scholar
  126. 126.
    Simon RA, Dazy KM, et al. Update on aspirin desensitization for chronic rhinosinusitis with polyps in aspirin-exacerbated respiratory disease (AERD). Curr Allergy Asthma Rep. 2015;15:5.CrossRefGoogle Scholar
  127. 127.
    McMains KC, Kountakis SE. Medical and surgical considerations in patients with Samter’s triad. Am J Rhinol. 2006;20:573–6.CrossRefPubMedGoogle Scholar
  128. 128.
    Settipane GA, Chafee FH. Nasal polyps in asthma and rhinitis. A review of 6037 patients. J Allergy Clin Immunol. 1977;59(1):17–21.CrossRefPubMedGoogle Scholar
  129. 129.
    Larsen K. The clinical relationship of nasal polyps to asthma. Allergy Asthma Proc. 17(5):243–9.Google Scholar
  130. 130.
    Bachert C, Zhang N, Holtappels G, et al. Presence of IL-5 protein and Ig E antibodies to staphylococcal enterotoxins in nasal polyps is associated with comorbid asthma. J Allergy Clin Immunol. 2010;126:962–8 e1–6.CrossRefPubMedGoogle Scholar
  131. 131.
    •• Tsetsos N, Goudakos JK, Daskalakis D, Konstantinidis I, Markou K. Monoclonal antibodies for the treatment of chronic rhinosinusitis with nasal polyposis: a systematic review. Rhinology. 2018;56:11–21. This is the first systematic review showing encouraging results for the use of all three main categories of monoclonal antibodies in CRSwNP patients. Google Scholar
  132. 132.
    Grundmann SA, Hemfort PB, Luger TA, Brechler R. Anti-IgE (omalizumab): a new therapeutic approach for chronic rhinosinusitis. J Allergy Clin Immunol. 2008;121(1):257–8.CrossRefPubMedGoogle Scholar
  133. 133.
    Guglielmo M, Gulotta C, Mancini F, Sacchi M, Tarantini F. Recalcitrant nasal polyposis: achievement of total remission following treatment with omalizumab. J Investig Allergol Clin Immunol. 2009;19(2):158–9.PubMedGoogle Scholar
  134. 134.
    Vennera Mdel C, Picado C, Mullol J, Alobid I, Bernal-Sprekelsen M. Efficacy of omalizumab in the treatment of nasal polyps. Thorax. 2011;66(9):823–4.Google Scholar
  135. 135.
    Gevaert P, Calus L, Van Zele T, Blomme K, De Ruyck N, Bauters W, et al. Omalizumab is effective in allergic and nonallergic patients with nasal polyps and asthma. J Allergy Clin Immunol. 2013;131(1):110–6 e1.CrossRefPubMedGoogle Scholar
  136. 136.
    Busse W, Buhi R, Fernandez C, Blogg M, Zhu J, Eisner MD, et al. Omalizumab and the risk of malignancy: results from a pooled analysis. J Allergy Clin Immunol. 2012;129(4):983–9.e6.  https://doi.org/10.1016/jaci.2012.01.033.CrossRefPubMedGoogle Scholar
  137. 137.
    Genentech, Inc. Xolair (omalizumab) [product insert]. South San Francisco. 2007.Google Scholar
  138. 138.
    Clutterback EJ, Hirst EM, Sanderson CJ. Human interleukin-5 (IL-5) regulates the production of eosinophils in human bone marrow cultures: comparison and interaction with IL-1, IL-3, IL-6, and GMCSF. Blood. 1989;73:1504–12.Google Scholar
  139. 139.
    Rudmik L, Soler ZM. Medical therapies for adult chronic sinusitis: a systematic review. JAMA. 2015;314:926–39.CrossRefPubMedGoogle Scholar
  140. 140.
    Bachert C, Wagenmann M, et al. IL-5 synthesis is upregulated in human nasal polyp tissue. J Allergy Clin Immunol. 1997;99:837–42.CrossRefPubMedGoogle Scholar
  141. 141.
    Zhang N, Van Zele T, Perez-Novo C, et al. Different types of T-effector cells orchestrate mucosal inflammation in chronic sinus disease. J Allergy Clin Immunol. 2008;122:961–8.CrossRefPubMedGoogle Scholar
  142. 142.
    Van Zele T, Hotappels G, et al. Differences in initial immunoprofiles between recurrent and nonrecurrent chronic rhinosinusitis with nasal polyps. Am J Rhinol Allergy. 2014;28:192–8.CrossRefPubMedGoogle Scholar
  143. 143.
    Bachert C, Sousa A, Lund VJ, Glenis K, et al. Reduced need for surgery in severe nasal polyposis with mepolizumab: randomized trial. J Allergy Clin Immunol. 2017;140(4):1024–31.CrossRefPubMedGoogle Scholar
  144. 144.
    Wang X, Zhang N, Bo M, Holtappels G, et al. Diversity of T-helper cytokine-profiles in chronic rhinosinusitis: a multicentre study in Europe, Asia and Oceania. J Allergy Clin Immunol. 2016;138:1344–53.CrossRefPubMedGoogle Scholar
  145. 145.
    Shirley M. Dupilumab: first global approval. Drugs. 2017;77(10):1115–21.CrossRefPubMedGoogle Scholar
  146. 146.
    Wenzel S, Ford L, Pearlman D, Spector S, Sher L, Skobieranda F, et al. Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med. 2013;368(26):2455–66.CrossRefPubMedGoogle Scholar
  147. 147.
    Beck LA, Thaci D, Hamilton JD, Graham NM, Bieber T, Rocklin R, et al. Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N Engl J Med. 2014;371(2):130–9.CrossRefPubMedGoogle Scholar
  148. 148.
    Bachert C, Mannent L, Naclerio RM, Mullol J, Ferguson BJ, Gevaert P, et al. Effect of subcutaneous dupilumab on nasal polyp burden in patients with chronic sinusitis and nasal polyposis: a randomized clinical trial. JAMA. 2016;315(5):469–79.CrossRefPubMedGoogle Scholar
  149. 149.
    Menzella F, Galeone C, Bertolini F, Castagnetti C, Facciolongo N. Innovative treatments for severe refractory asthma: how to choose the right option for the right patient? J Asthma Allergy. 2017;10:237–47.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Viktoria Grammatopoulou
    • 1
  • Coimbatore V. Praveena
    • 2
  • Vishnu S. Sunkaraneni
    • 1
    Email author
  1. 1.ENT DepartmentRoyal Surrey County HospitalGuildfordUK
  2. 2.ENT DepartmentFrimley Park HospitalFrimleyUK

Personalised recommendations