Current Otorhinolaryngology Reports

, Volume 6, Issue 1, pp 24–31 | Cite as

Meniere’s Disease: Genetics and the Immune System

Otology (A Vambutas, Section Editor)

Abstract

Purpose of Review

The purpose of this review was to describe the ongoing research that supports that Meniere’s disease (MD) is a heterogeneous set of clinical disorders.

Recent Findings

Different clinical subgroups of patients have been identified, which may have different etiological factors. Genes associated to the initiation or progression of MD can be classified in four main categories: immune-associated, proliferation and cell survival, cell surface channels, and extracellular matrix proteins. Two major mechanisms have been involved in MD, the innate immune response involving proinflammatory cytokines and NF-κB-mediated inflammation, but the molecular events that initiate the disorder are not known. The challenge of the immune system by antigens or allergic reactions may involve several targets in the cochlea, such as the endolymphatic sac or the spiral ligament, leading to inflammation and finally endolymphatic hydrops.

Summary

Several clinical variants have been described, and genetic and immunological factors seem to play a central role in MD.

Keywords

Meniere’s disease Autoimmune inner ear Vertigo Sensorineural hearing loss Genetics Interleukin-1-beta 

Notes

Acknowledgements

JALE is supported by Grants from Meniere’s Society, UK, PI17/01644 Grant from ISCIII by FEDER Funds from EU and H2020-MSCA-ITN-2016–722046 from EU.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they do not have any conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional research committee standards, and international guidelines.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    • Lopez-Escamez JA, Carey J, Chung WH, Goebel JA, Magnusson M, Mandalà M, et al. Diagnostic criteria for Menière’s disease. J Vestib Res. 2015;25(1):1–7.  https://doi.org/10.3233/VES-150549. Consensus document developed by the Barany Society Classification Committee in acordance with AAO-HNS, EAONO, Japan Society for Equilibrium Research and Korean Balance Society. PubMedGoogle Scholar
  2. 2.
    Espinosa-Sanchez JM, Lopez-Escamez JA. Menière’s disease. In: Furman J, Lempert T, editors. Handb. Clin. Neurol. Amsterdam: Elsevier; 2016. p. 257–77.Google Scholar
  3. 3.
    Hallpike C. Ménière’s Disease. Postgr Med J. 1955;31(357):330–40.  https://doi.org/10.1136/pgmj.31.357.330.CrossRefGoogle Scholar
  4. 4.
    Nakashima T, Pyykkö I, Arroll MA, Casselbrant ML, Foster CA, Manzoor NF, et al. Meniere’s disease. Nat Rev Dis PrimMacmillan Publishers Limited. 2016;2:1–18.  https://doi.org/10.1038/nrdp.2016.28.Google Scholar
  5. 5.
    Maekawa C, Kitahara T, Kizawa K, Okazaki S, Kamakura T, Horii A, et al. Expression and translocation of Aquaporin-2 in the endolymphatic sac in patients with Meniere’s disease. J Neuroendocrinol. 2010;22(11):1157–64.  https://doi.org/10.1111/j.1365-2826.2010.02060.x.CrossRefPubMedGoogle Scholar
  6. 6.
    Yoo T, Yazawa Y, Tomoda K, Floyd R. Type II collagen induced autoimmune endolymphatic hydrops in guinea pig. Science. 1983;222:65–7.  https://doi.org/10.1016/S0531-5131(03)00813-6.CrossRefPubMedGoogle Scholar
  7. 7.
    Yoo TJ, Shea J, Ge X, Sener O, Mora M, Kwon SS, et al. Presence of autoantibodies in the sera of Meniere’s disease. Ann Otol Rhinol Laryngol. 2001;110:425–9.  https://doi.org/10.1016/S0531-5131(03)00813-6.CrossRefPubMedGoogle Scholar
  8. 8.
    Derebery MJ, Berliner KI. Allergy and its relation to Meniere’s disease. Otolaryngol Clin N Am. 2010;43(5):1047–58.  https://doi.org/10.1016/j.otc.2010.05.004.CrossRefGoogle Scholar
  9. 9.
    Takeda T, Takeda S, Egami N, Kakigi A, Nishioka R, Yamasoba T. Type 1 allergy-induced endolymphatic hydrops and the suppressive effect of leukotriene receptor antagonist. Otol Neurotol. 2012;33(5):886–90.  https://doi.org/10.1097/MAO.0b013e3182565a27.CrossRefPubMedGoogle Scholar
  10. 10.
    Merchant SN, Adams JC, Nadol JB. Pathophysiology of Ménière’s syndrome: are symptoms caused by endolymphatic hydrops? Otol Neurotol. 2005;26(1):74–81.  https://doi.org/10.1097/00129492-200501000-00013.CrossRefPubMedGoogle Scholar
  11. 11.
    Alexander TH, Harris JP. Current epidemiology of Meniere’s syndrome. Otolaryngol Clin North AmElsevier Ltd. 2010;43(5):965–70.  https://doi.org/10.1016/j.otc.2010.05.001.CrossRefPubMedGoogle Scholar
  12. 12.
    Havia M, Kentala E, Pyyko I. Prevalence of Menière’s disease in general population of southern Finland. Otolaryngol Head Neck Surg. 2005;133(5):762–8.  https://doi.org/10.1016/j.otohns.2005.06.015.CrossRefPubMedGoogle Scholar
  13. 13.
    Kotimäki J, Sorri M, Aantaa E, Nuutinen J. Prevalence of meniere disease in Finland. Laryngoscope. John Wiley & Sons, Inc. 1999;109:748–53.  https://doi.org/10.1097/00005537-199905000-00013.CrossRefPubMedGoogle Scholar
  14. 14.
    Watanabe Y, Mizukoshi K, Shojaku H, Watanabe I, Hinoki M, Kitahara M. Epidemiological and clinical characteristics of Meniere’s disease in Japan. Acta Otolaryngol. 1995;115(sup519):206–10.  https://doi.org/10.3109/00016489509121906.CrossRefGoogle Scholar
  15. 15.
    Wladislavosky-Waserman P, Facer GW, Mokri B, Kurland LT. Meniere’s disease: a 30-year epidemiologic and clinical study in Rochester, Mn, 1951-1980. Laryngoscope. 1984;94(8):1098–102.  https://doi.org/10.1288/00005537-198408000-00020.CrossRefPubMedGoogle Scholar
  16. 16.
    Okafor B. Incidence of Menière’s disease. J Laryngol Otol. 1984;98(08):775–9.  https://doi.org/10.1017/S0022215100147449.CrossRefPubMedGoogle Scholar
  17. 17.
    • Tyrrell JS, DJD W, Ukoumunne OC, Fleming LE, Osborne NJ. Prevalence, associated factors, and comorbid conditions for Ménière’s disease. Ear Hear. 2014;35(4):e162–9.  https://doi.org/10.1097/AUD.0000000000000041. Population-based epidemiology study of Meniere disease confirmed previous observation that autoimmune disorders are associated with Meniere disease. CrossRefPubMedGoogle Scholar
  18. 18.
    Ohmen JD, White CH, Li X, Wang J, Fisher LM, Zhang H, et al. Genetic evidence for an ethnic diversity in the susceptibility to Ménière’s disease. Otol Neurotol. 2013;34(7):1336–41.  https://doi.org/10.1097/MAO.0b013e3182868818.CrossRefPubMedGoogle Scholar
  19. 19.
    Wiet RJ. Patterns of ear disease in the southwestern American Indian. Arch Otolaryngol. 1979;105:381–5.CrossRefPubMedGoogle Scholar
  20. 20.
    • Belinchon A, Perez-Garrigues H, Tenias JM, Lopez A. Hearing assessment in Menière’s disease. Laryngoscope. 2011;121(3):622–6.  https://doi.org/10.1002/lary.21335. This longitudinal study showed that age-normlized audiograms were able to identify unilateral (involving low and mid-frequencies) and bilateral Meniere disease (involving all frequencies). CrossRefPubMedGoogle Scholar
  21. 21.
    Hietikko E, Kotimäki J, Sorri M, Männikkö M. High incidence of Meniere-like symptoms in relatives of Meniere patients in the areas of Oulu University Hospital and Kainuu Central Hospital in Finland. Eur J Med Genet. 2013;56(6):279–85.  https://doi.org/10.1016/j.ejmg.2013.03.010.CrossRefPubMedGoogle Scholar
  22. 22.
    Morrison AW, Bailey MES, Morrison GAJ. Familial Ménière’s disease: clinical and genetic aspects. J Laryngol Otol. 2009;123(01):29–37.  https://doi.org/10.1017/S0022215108002788.CrossRefPubMedGoogle Scholar
  23. 23.
    •• Requena T, Espinosa-Sanchez JM, Cabrera S, Trinidad G, Soto-Varela A, Santos-Perez S, et al. Familial clustering and genetic heterogeneity in Meniere’s disease. Clin Genet. 2014;85(3):245–52.  https://doi.org/10.1111/cge.12150. This is the largest cross-sectional study performed that was able to demosntrate a familial aggregation in Meniere disease and identified 76 multicase families with Meniere disease. CrossRefPubMedGoogle Scholar
  24. 24.
    •• Frejo L, Soto-Varela A, Santos-Perez S, Aran I, Batuecas-Caletrio A, Perez-Guillen V, et al. Clinical subgroups in bilateral Meniere disease. Front Neurol. 2016;7:1–10.  https://doi.org/10.3389/fneur.2016.00182. This study was able to identify clinical predictors for 5 subgroups of patients with bilateral Meniere disease by cluster analysis. CrossRefGoogle Scholar
  25. 25.
    • Frejo L, Martin-Sanz E, Teggi R, Trinidad G, Soto-Varela A, Santos-Perez S, et al. Extended phenotype and clinical subgroups in unilateral Meniere disease: a cross-sectional study with cluster analysis. Clin Otolaryngol. 2017;42(6):1–9.  https://doi.org/10.1111/coa.12844. The second study performed in unilateral Meniere disease confirmed the clinical subgroups found in patients with bilateral involvement, including familial and autoimmune Meniere disease. CrossRefGoogle Scholar
  26. 26.
    Lee JM, Kim MJ, Jung J, Kim HJ, Seo YJ, Kim SH. Genetic aspects and clinical characteristics of familial Meniere’s disease in a South Korean population. Laryngoscope. 2015;125(9):2175–80.  https://doi.org/10.1002/lary.25207.CrossRefPubMedGoogle Scholar
  27. 27.
    Xenellis J, Morrison AW, McClowskey D, Festenstein H. HLA antigens in the pathogenesis of Menière’s disease. J Laryngol Otol. 1986;100(01):21–4.  https://doi.org/10.1017/S0022215100098698.CrossRefPubMedGoogle Scholar
  28. 28.
    Hietikko E, Kotimäki J, Okuloff A, Sorri M, Männikkö M. A replication study on proposed candidate genes in Ménière’s disease, and a review of the current status of genetic studies. Int J Audiol. 2012;51(11):841–5.  https://doi.org/10.3109/14992027.2012.705900.CrossRefPubMedGoogle Scholar
  29. 29.
    Gazquez I, Moreno A, Aran I, Soto-Varela A, Santos S, Perez-Garrigues H, et al. MICA-STR A.4 is associated with slower hearing loss progression in patients with Ménière’s disease. Otol Neurotol. 2012;33(2):223–9.  https://doi.org/10.1097/MAO.0b013e31824296c8.CrossRefPubMedGoogle Scholar
  30. 30.
    Lopez-Escamez JA, Saenz-Lopez P, Acosta L, Moreno A, Gazquez I, Perez-Garrigues H, et al. Association of a functional polymorphism of PTPN22 encoding a lymphoid protein phosphatase in bilateral Meniere’s disease. Laryngoscope. 2010;120:103–7.  https://doi.org/10.1002/lary.20650.CrossRefPubMedGoogle Scholar
  31. 31.
    Requena T, Gazquez I, Moreno A, Batuecas A, Aran I, Soto-Varela A, et al. Allelic variants in TLR10 gene may influence bilateral affectation and clinical course of Meniere’s disease. Immunogenetics. 2013;65(5):345–55.  https://doi.org/10.1007/s00251-013-0683-z.CrossRefPubMedGoogle Scholar
  32. 32.
    Furuta T, Teranishi M, Uchida Y, Nishio N, Kato K, Otake H, et al. Association of interleukin-1 gene polymorphisms with sudden sensorineural hearing loss and Ménière’s disease. Int J Immunogenet. 2011;38(3):249–54.  https://doi.org/10.1111/j.1744-313X.2011.01004.x.CrossRefPubMedGoogle Scholar
  33. 33.
    Gázquez I, Moreno A, Requena T, Ohmen J, Santos-Perez S, Aran I, et al. Functional variants of MIF, INFG and TFNA genes are not associated with disease susceptibility or hearing loss progression in patients with Mèniére’s disease. Eur Arch Otorhinolaryngol. 2013;270(4):1521–9.  https://doi.org/10.1007/s00405-012-2268-0.CrossRefPubMedGoogle Scholar
  34. 34.
    Yazdani N, Khorsandi Ashtiani MT, Zarandy MM, Mohammadi SJ, Ghazavi H, Mahrampour E, et al. Association between MIF gene variation and Meniere’s disease. Int J mmunogenet. 2013;40(6):488–91.  https://doi.org/10.1111/iji.12058.CrossRefGoogle Scholar
  35. 35.
    Cox GM, Kithcart AP, Pitt D, Guan Z, Alexander J, Williams JL, et al. Macrophage migration inhibitory factor potentiates autoimmune-mediated neuroinflammation. J Immunol. 2013;191(3):1043–54.  https://doi.org/10.4049/jimmunol.1200485.CrossRefPubMedGoogle Scholar
  36. 36.
    Li L, Wang Y, An L, Kong X, Huang T. A network-based method using a random walk with restart algorithm and screening tests to identify novel genes associated with Meniere’s disease. PLoS One. 2017;12(8):e0182592.  https://doi.org/10.1371/journal.pone.0182592.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Cabrera S, Sanchez E, Requena T, Martinez-Bueno M, Benitez J, Perez N, et al. Intronic variants in the NFKB1 gene may influence hearing forecast in patients with unilateral sensorineural hearing loss in meniere’s disease. PLoS One. 2014;9(11):e112171.  https://doi.org/10.1371/journal.pone.0112171.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Candreia C, Schmuziger N, Gürtler N. Molecular analysis of aquaporin genes 1 to 4 in patients with Menière’s disease. Cell Physiol Biochem. 2010;26(4-5):787–92.  https://doi.org/10.1159/000322346.CrossRefPubMedGoogle Scholar
  39. 39.
    Teranishi M, Uchida Y, Nishio N, Kato K, Otake H, Yoshida T, et al. Polymorphisms in genes involved in oxidative stress response in patients with sudden sensorineural hearing loss and Ménière’s disease in a Japanese population. DNA Cell Biol. 2012;31(10):1555–62.  https://doi.org/10.1089/dna.2012.1631.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    • Requena T, Cabrera S, Martín-Sierra C, Price SD, Lysakowski A, Lopez-Escamez JA. Identification of two novel mutations in FAM136A and DTNA genes in autosomal-dominant familial Meniere’s disease. Hum Mol Genet. 2015;24(4):1119–26.  https://doi.org/10.1093/hmg/ddu524. This was the first family with autosomal dominant Meniere disease in three generation segragating ultrarare variants in coding regions of DTNA and FAM136A genes. CrossRefPubMedGoogle Scholar
  41. 41.
    Martín-Sierra C, Requena T, Frejo L, Price SD, Gallego-Martinez A, Batuecas-Caletrio A, et al. A novel missense variant in PRKCB segregates low-frequency hearing loss in an autosomal dominant family with Meniere’s disease. Hum Mol Genet. 2016;25(16):3407–15.  https://doi.org/10.1093/hmg/ddw183.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Martín-Sierra C, Gallego-Martinez A, Requena T, Frejo L, Batuecas-Caletrío A, Lopez-Escamez JA. Variable expressivity and genetic heterogeneity involving DPT and SEMA3D genes in autosomal dominant familial Meniere’s disease. Eur J Hum Genet. 2017;25(2):200–7.  https://doi.org/10.1038/ejhg.2016.154.CrossRefPubMedGoogle Scholar
  43. 43.
    Kim BJ, Kim AR, Han KH, Rah YC, Hyun J, Ra BS, et al. Distinct vestibular phenotypes in DFNA9 families with COCH variants. Eur Arch Oto-Rhino-Laryngol Springer Berlin Heidelberg. 2016;273(10):2993–3002.  https://doi.org/10.1007/s00405-015-3885-1.CrossRefGoogle Scholar
  44. 44.
    Gazquez I, Soto-Varela A, Aran I, Santos S, Batuecas A, Trinidad G, et al. High prevalence of systemic autoimmune diseases in patients with Meniere’s disease. PLoS One. 2011;6(10):e26759.  https://doi.org/10.1371/journal.pone.0026759.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kim SH, Kim JY, Lee HJ, Gi M, Kim BG, Choi JY. Autoimmunity as a candidate for the etiopathogenesis of Meniere’s disease: detection of autoimmune reactions and diagnostic biomarker candidate. PLoS One. 2014;9(10):e111039.  https://doi.org/10.1371/journal.pone.0111039.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Chiarella G, Di Domenico M, Petrolo C, Saccomanno M, Rothenberger R, Giordano A, et al. A proteomics-driven assay defines specific plasma protein signatures in different stages of Ménière’s disease. J Cell Biochem. 2014;115(6):1097–100.  https://doi.org/10.1002/jcb.24747.CrossRefPubMedGoogle Scholar
  47. 47.
    Lopez-Escamez JA, Saenz-Lopez P, Gazquez I, Moreno A, Gonzalez-Oller C, Soto-Varela A, et al. Polymorphisms of CD16A and CD32 Fcγ receptors and circulating immune complexes in Ménière’s disease: a case-control study. BMC Med Genet. BioMed Central. 2011;12:2.  https://doi.org/10.1186/1471-2350-12-2.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Moller MN, Kirkeby S, Vikesa J, Nielsen FC, Caye-Thomasen P. Gene expression in the human endolymphatic sac: the solute carrier molecules in endolymphatic fluid homeostasis. Otol Neurotol. 2015;36(5):915–22.  https://doi.org/10.1097/MAO.0000000000000669.CrossRefPubMedGoogle Scholar
  49. 49.
    Ciccarelli F, Martinis M, Ginaldi L. An update on autoinflammatory diseases. Curr Med Chem. 2014;21(3):261–9.  https://doi.org/10.2174/09298673113206660303.CrossRefPubMedGoogle Scholar
  50. 50.
    Vambutas A, Pathak S. AAO: autoimmune and autoinflammatory (disease) in otology: what is new in immune-mediated hearing loss. Laryngoscope Investig Otolaryngol. 2016;1(5):110–5.  https://doi.org/10.1002/lio2.28.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    •• Nakanishi H, Kawashima Y, Kurima K, Chae JJ, Ross AM, Pinto-Patarroyo G, et al. NLRP3 mutation and cochlear autoinflammation cause syndromic and nonsyndromic hearing loss DFNA34 responsive to anakinra therapy. Proc Natl Acad Sci U S A. 2017;114(37):E7766–75. This study describes NLRP3-mediated inflammation pathway as a potential mechanism for autoinflammatory inner ear diseease associated with sensorineural hearing loss and elevated IL1-β.  https://doi.org/10.1073/pnas.1702946114.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    House JW, Doherty JK, Fisher LM, Derebery MJ, Berliner KI. Meniere’s disease: prevalence of contralateral ear involvement. Otol Neurotol. 2006;27(3):355–61.  https://doi.org/10.1097/00129492-200604000-00011.CrossRefPubMedGoogle Scholar
  53. 53.
    McCabe BF. Autoimmune sensorineural hearing loss. Ann Otol Rhinol Laryngol. 1979;88(5):585–9.  https://doi.org/10.1177/000348947908800501.CrossRefPubMedGoogle Scholar
  54. 54.
    Ruckenstein MJ. Autoimmune inner ear disease. Curr Opin Otolaryngol Head Neck Surg. 2004;12(5):426–30.  https://doi.org/10.1097/01.moo.0000136101.95662.aa.CrossRefPubMedGoogle Scholar
  55. 55.
    • Pathak S, Goldofsky E, Vivas EX, Bonagura VR, Vambutas A. IL-1β is overexpressed and aberrantly regulated in corticosteroid nonresponders with autoimmune inner ear disease. J Immunol. 2011;186:1870–9.  https://doi.org/10.4049/jimmunol.1002275. This study describes the mechanism of resistence to oral steroids. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Vambutas A, Lesser M, Mullooly V, Pathak S, Zahtz G, Rosen L, et al. Early efficacy trial of anakinra in corticosteroid-resistant autoimmune inner ear disease. J Clin Invest. 2014;124(9):4115–22.  https://doi.org/10.1172/JCI76503.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Pathak S, McDermott MF, Savic S. Autoinflammatory diseases: update on classification diagnosis and management. J Clin Pathol. 2017;70(1):1–8.  https://doi.org/10.1136/jclinpath-2016-203810.CrossRefPubMedGoogle Scholar
  58. 58.
    Greco A, Gallo A, Fusconi M, Marinelli C, Macri GF, De Vincentiis M. Meniere’s disease might be an autoimmune condition? Autoimmun Rev Elsevier BV. 2012;11(10):731–8.  https://doi.org/10.1016/j.autrev.2012.01.004.CrossRefPubMedGoogle Scholar
  59. 59.
    Riente L, Bongiorni F, Nacci A, Migliorini P, Segnini G, Delle Sedie A, et al. Antibodies to inner ear antigens in Meniere’s disease. Clin Exp Immunol. 2004;135(1):159–63.  https://doi.org/10.1046/j.1365-2249.2004.02317.x.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Xu W-D, Zhao Y, Liu Y. Role of the TWEAK/Fn14 pathway in autoimmune diseases. Immunol Res. 2016;64(1):44–50.  https://doi.org/10.1007/s12026-015-8761-y.CrossRefPubMedGoogle Scholar
  61. 61.
    Duke W. Ménière’s syndrome caused by allergy. JAMA J Am Med Assoc. 1923;81(26):2179.  https://doi.org/10.1001/jama.1923.02650260021006.CrossRefGoogle Scholar
  62. 62.
    Derebery MJ, Berliner KI. Prevalence of allergy in Meniere’s disease. Otolaryngol Neck Surg. 2000;123(1):69–75.  https://doi.org/10.1067/mhn.2000.105715.CrossRefGoogle Scholar
  63. 63.
    Balakireva AV, Zamyatnin AA Jr. Properties of gluten intolerance: gluten structure, evolution, Pathogenicity and Detoxification Capabilities. Nutrients. 2016;8(10):E644.  https://doi.org/10.3390/nu8100644.CrossRefPubMedGoogle Scholar
  64. 64.
    Di Berardino F, Cesarani A. Gluten sensitivity in Meniere’s disease. Laryngoscope. 2012;122(3):700–2.  https://doi.org/10.1002/lary.22492.CrossRefPubMedGoogle Scholar
  65. 65.
    Topuz B, Ögmen G, Ardiç FN, Kara CO. Provocation of endolymphatic hydrops with a prick test in Meniere’s disease. Adv Ther. 2007;24(4):819–25.  https://doi.org/10.1007/BF02849975.CrossRefPubMedGoogle Scholar
  66. 66.
    Keles E, Gödekmerdan A, Kalidag T, Kaygusuz I, Yalçin S, Cengiz Alpay H, et al. Ménière’s disease and allergy: allergens and cytokines. J Laryngol Otol. 2004;118(09):688–93.  https://doi.org/10.1258/0022215042244822.CrossRefPubMedGoogle Scholar
  67. 67.
    Savastano M, Giacomelli L, Marioni G. Non-specific immunological determinations in Meniere’s disease: any role in clinical practice? Eur Arch Oto-Rhino-Laryngol. 2007;264(1):15–9.  https://doi.org/10.1007/s00405-006-0147-2.CrossRefGoogle Scholar
  68. 68.
    Dagli M, Goksu N, Eryilmaz A, Mocan Kuzey G, Bayazit Y, Gun BD, et al. Expression of histamine receptors (H1, H2, and H3) in the rabbit endolymphatic sac: an immunohistochemical study. Am J Otolaryngol - Head Neck Med Surg. 2008;29(1):20–3.  https://doi.org/10.1016/j.amjoto.2006.12.003.Google Scholar
  69. 69.
    Takumida M, Takumida H, Anniko M. Localization of histamine (H1, H2, H3 and H4 ) receptors in mouse inner ear. Acta Otolaryngol. 2016;136(6):537–44.  https://doi.org/10.3109/00016489.2015.1136433.CrossRefPubMedGoogle Scholar
  70. 70.
    Egami N, Kakigi A, Takeda T, Takeda S, Nishioka R, Hyodo M, et al. Type 1 allergy-induced endolymphatic hydrops and the suppressive effect of H1-receptor antagonist (olopatadine hydrochloride). Otol Neurotol. 2014;35(3):104–9.  https://doi.org/10.1097/MAO.0000000000000195.CrossRefGoogle Scholar
  71. 71.
    •• Adrion C, Fischer CS, Wagner J, Gürkov R, Mansmann U, Strupp M. Efficacy and safety of betahistine treatment in patients with Meniere’s disease: primary results of a long term, multicentre, double blind, randomised, placebo controlled, dose defining trial (BEMED trial). BMJ. 2016;352:h6816.  https://doi.org/10.1136/bmj.h6816. BMJ Publishing Group. This multicentre randomized clinical trial showed that betahistine at low or high dosage has no benefit compared to placebo. CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Lezius F, Adrion C, Mansmann U, Jahn K, Strupp M. High-dosage betahistine dihydrochloride between 288 and 480 mg/day in patients with severe Menière’s disease: a case series. Eur Arch Oto-Rhino-Laryngol. 2011;268(8):1237–40.  https://doi.org/10.1007/s00405-011-1647-2.CrossRefGoogle Scholar
  73. 73.
    Kim M, Kim K-S. Vestibular function change in a vasopressin-induced hydrops model. Otol Neurotol. 2017;38(10):e495–500.  https://doi.org/10.1097/MAO.0000000000001574.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Otology & Neurotology Group CTS495, Department of Genomic Medicine Otology & Neurotology Group CTS495, Department of Genomic MedicineCentro de Genómica e Investigación Oncológica–Pfizer/Universidad de Granada/Junta de Andalucía (GENYO)GranadaSpain
  2. 2.Luxembourg Centre for Systems Biomedicine (LCSB)University of LuxembourgEsch-sur-AlzetteLuxembourg
  3. 3.Department of Otolaryngology, Instituto de Investigación Biosanitaria ibsHospital Universitario Virgen de las NievesGranadaSpain

Personalised recommendations