Advertisement

Update on the Use of Premium Intraocular Lenses in Glaucoma

  • Abayomi Fabunmi
  • Steven R. SarkisianJrEmail author
Diagnosis and Monitoring of Glaucoma (J Kammer, Section Editor)
  • 3 Downloads
Part of the following topical collections:
  1. Diagnosis and Monitoring of Glaucoma

Abstract

Purpose of Review

In this report, we review the latest evidence for and against the use of premium intraocular lenses (IOL) in patients with glaucoma.

Recent Findings

Visual outcomes from clinical studies of newer Extend Depth of Focus (EDF) IOLs and low add apodized diffractive-refractive IOLs are significantly better than prior generations of multifocal (MF) IOLs. Clinical studies show that EDF and monofocal IOLs have similar contrast sensitivities in photopic conditions independent of spatial frequency.

Summary

Premium IOLs restore uncorrected visual function, but intolerable visual disturbances and contrast impairment are uncommon side effects. Awareness of issues unique to glaucoma is critical for appropriate patient selection. Combined procedures with sizable shifts in IOP may have better refractive outcomes when staged. Toric and accommodating IOLs are reasonable options for most stages of glaucoma without fixation loss. EDF and newer MF IOLs can be appropriate options for stable pre-perimetric and early perimetric conditions.

Keywords

Glaucoma Premium intraocular lenses Contrast sensitivity Multifocal Extended depth of focus 

Notes

Compliance with Ethical Standards

Conflict of Interest

Abayomi Fabunmi declares no potential conflicts of interest. Steven Sarkisian is a consultant/advisor for Allergen, Beaver-Visitec International, Inc., Katema Products, Inc., New World Medical Inc., Omeros, and Stanten, Inc. Dr. Sarkisian is also a consultant/advisor and has received grant support and lecture fees from Alcon Laboratories, Inc. He is also a consultant/advisor and received grant support from Glaukos Corporation. Lastly, Dr. Sarkisian is a consultant/advisor, equity owner, and received grant support from Sight Sciences, Inc.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Visser N, Beckers HJ, Bauer NJ, Gast ST, Zijlmans BL, Berenschot TT, et al. Toric vs aspherical control intraocular lenses in patients with cataract and corneal astigmatism: a randomized clinical trial. JAMA Ophthalmol. 2014;132(12):1462–8.  https://doi.org/10.1001/jamaophthalmol.2014.3602.CrossRefGoogle Scholar
  2. 2.
    •• Song XD, Hao YS, Bao YZ, Li ZH, Zhang H, Yu AY, et al. A multicenter study of the effectiveness and safety of Toric intraocular lens implantation. Zhonghua Yan Ke Za Zhi. 2018;54(5):349–56.  https://doi.org/10.3760/cma.j.issn.0412-4081.2018.05.008. Efficacy of toric intraocular lenses for the correction of regular astigmatism. Google Scholar
  3. 3.
    • Leyland M, et al. Multifocal versus monofocal intraocular lenses after cataract extraction. Cochrane Database Syst Rev. 2016;12:CD003169. Quantitative assessment of the benefit of multifocal compared to monofocal IOLs. Google Scholar
  4. 4.
    •• Pedrotti E, Carones F, Aiello F, Mastropasqua R. Comparative analysis of visual outcomes with 4 intraocular lenses: monofocal, multifocal, and extended range of vision. J Cataract Refract Surg. 2018;44(2):156–67. Analysis of contrast sensitivity between diffractive-refractive, monofocal, and extended depth of focus IOLs. Validated spectacle independence analysis with between diffractive-refractive, monofocal, and extended depth of focus IOLs. CrossRefGoogle Scholar
  5. 5.
    Yoo Y-S, Whang W-J, Byun Y-S, Piao JJ, Kim DY, Joo C-K, et al. Through-focus optical bench performance of extended depth-of-focus and bifocal intraocular lenses compared to a monofocal lens. J Refract Surg. 2018;34(4):236–43.CrossRefGoogle Scholar
  6. 6.
    • Mencucci R, Favuzza E, Caporossi O, Savastano A, Rizzo S. Comparative analysis of visual outcomes, reading skills, contrast sensitivity, and patient satisfaction with two models of trifocal diffractive intraocular lenses and an extended range of vision intraocular lens. Graefes Arch Clin Exp Ophthalmol. 2018;256(10):1913–22.  https://doi.org/10.1007/s00417-018-4052-3. Comparative analysis of visual outcomes and contrast sensitivities after implantation of an extended depth of focus IOL or a trifocal diffractive lens. CrossRefGoogle Scholar
  7. 7.
    • Savini G, Schiano-Lomoriello D, Balducci N, Barboni P. Visual performance of a new extended depth-of-focus intraocular lens compared to a distance-dominant diffractive multifocal intraocular lens. J Refract Surg. 2018;34(4):228–35.  https://doi.org/10.3928/1081597X-20180125-01. Early clinical outcomes study reporting visual outcomes and contrast sensitivities after implantation of an extended depth of focus IOL compared to a distance dominant diffractive multifocal. CrossRefGoogle Scholar
  8. 8.
    • Savini G, Balducci N, Carbonara C, Rossi S, Altieri M, Frugis N, et al. Functional assessment of a new extended depth-of-focus intraocular lens. Eye (Lond). 2018.  https://doi.org/10.1038/s41433-018-0221-1 Assessment of visual outcomes and contrast sensitives of a new extend depth of focus IOL.
  9. 9.
    Cochener B, Boutillier G, Lamard M, Auberger-Zagnoli C. A comparative evaluation of a new generation of diffractive trifocal and extended depth of focus intraocular lenses. J Refract Surg. 2018;34(8):507–14.  https://doi.org/10.3928/1081597X-20180530-02.CrossRefGoogle Scholar
  10. 10.
    •• Zhou H, Zhu C, Xu W, Zhou F. The efficacy of accommodative versus monofocal intraocular lenses for cataract patients: a systematic review and meta-analysis. Medicine (Baltimore). 2018;97(40):e12693.  https://doi.org/10.1097/MD.0000000000012693. Efficacy of accommodative IOL compared to monfocal lenses. CrossRefGoogle Scholar
  11. 11.
    Beiko GHH, Haigis W, Steinmueller A. Distribution of the corneal spherical aberration in a comprehensive ophthalmology practice, and can keratometry be predictive of the value of the corneal spherical aberration? J Cataract Refract Surg. 2007;33(5):848–58.CrossRefGoogle Scholar
  12. 12.
    Hawkins AS, Szlyk JP, Ardickas Z, Alexander KR, Wilensky JT. Comparison of contrast sensitivity, visual acuity, and Humphrey visual field testing in patients with glaucoma. J Glaucoma. 2003;12(2):134–8.CrossRefGoogle Scholar
  13. 13.
    Kim SW, Ahn H, Kim EK, Kim TI. Comparison of higher order aberrations in eyes with aspherical or spherical intraocular lenses. Eye (Lond). 2008;22(12):1493–8.CrossRefGoogle Scholar
  14. 14.
    Tzelikis PF, Akaishi L, Trindade FC, Boteon JE. Spherical aberration and contrast sensitivity in eyes implanted with aspheric and spherical intraocular lenses: a comparative study. Am J Ophthalmol. 2008;145(5):827–33.CrossRefGoogle Scholar
  15. 15.
    Packer M, Fine IH, Hoffman RS, Piers PA. Improved functional vision with a modified prolate intraocular lens. J Cataract Refract Surg. 2004;30(5):986–92.CrossRefGoogle Scholar
  16. 16.
    Trueb PR, Albach C, Montés-Micó R, Ferrer-Blasco T. Visual acuity and contrast sensitivity in eyes implanted with aspheric and spherical intraocular lenses. Ophthalmology. 2009;116(5):890–5.CrossRefGoogle Scholar
  17. 17.
    Caporossi A, Casprini F, Martone G, Balestrazzi A, Tosi GM, Ciompi L. Contrast sensitivity evaluation of aspheric and spherical intraocular lenses 2 years after implantation. J Refract Surg. 2009;25(7):578–90.CrossRefGoogle Scholar
  18. 18.
    Farid M, Chak G, Garg S, Steinert RF. Reduction in mean deviation values in automated perimetry in eyes with multifocal compared to monofocal intraocular lens implants. Am J Ophthalmol. 2014;158(2):227–231.e1.  https://doi.org/10.1016/j.ajo.2014.04.017.CrossRefGoogle Scholar
  19. 19.
    Aychoua N, Junoy Montolio FG, Jansonius NM. Influence of multifocal intraocular lenses on standard automated perimetry test results. JAMA Ophthalmol. 2013;131(4):481–5.  https://doi.org/10.1001/jamaophthalmol.2013.2368.CrossRefGoogle Scholar
  20. 20.
    Kohnen T, Allen D, Boureau C, Dublineau P, Hartmann C, Mehdorn E, et al. European multicenter study of the AcrySof ReSTOR apodized diffractive intraocular lens. Ophthalmology. 2006;113:578–84.CrossRefGoogle Scholar
  21. 21.
    Alfonso JF, Fernández-Vega L, Baamonde MB, Montés-Micó R. Prospective visual evaluation of apodized diffractive intraocular lenses. J Cataract Refract Surg. 2007;33:1235–43.CrossRefGoogle Scholar
  22. 22.
    Souza CE, Muccioli C, Soriano ES, Chalita MR, Oliveira F, Freitas LL, et al. Visual performance of AcrySof ReSTOR apodized diffractive IOL: a prospective comparative trial. Am J Ophthalmol. 2006;141:827–32.CrossRefGoogle Scholar
  23. 23.
    Zelichowska B, Rekas M, Stankiewicz A, et al. Apodized diffractive versus refractive multifocal intraocular lenses: optical and visual evaluation. J Cataract Refract Surg. 2008;34:2036–42.CrossRefGoogle Scholar
  24. 24.
    • Dyrda A, Martínez-Palmer A, Martín-Moral D, Rey A, Morilla A, Castilla-Martí M, et al. Clinical results of diffractive, refractive, hybrid multifocal, and monofocal intraocular lenses. J Ophthalmol. 2018;2018:8285637.  https://doi.org/10.1155/2018/8285637 eCollection 2018. Clinical analysis of patient satisfaction with contrast sensitives among monfocal diffractive, refractive, and hybrid IOL. Google Scholar
  25. 25.
    Visser N, Beckers HJ, Bauer NJ, Gast ST, Zijlmans BL, Berenschot TT, et al. Toric vs aspherical control intraocular lenses in patients with cataract and corneal astigmatism: a randomized clinical trial. JAMA Ophthalmol. 2014;132(12):1462–8.  https://doi.org/10.1001/jamaophthalmol.2014.3602.CrossRefGoogle Scholar
  26. 26.
    Kessel L, Andresen J, Tendal B, Erngaard D, Flesner P, Hjortdal J. Toric intraocular lenses in the correction of astigmatism during cataract surgery: a systematic review and meta-analysis. Ophthalmology. 2016;123(2):275–86.  https://doi.org/10.1016/j.ophtha.2015.10.002.CrossRefGoogle Scholar
  27. 27.
    •• Brown RH, Zhong L, Bozeman CW, Lynch MG. Toric intraocular lens outcomes in patients with glaucoma. J Refract Surg. 2015;31(6):366–72.  https://doi.org/10.3928/1081597X-20150521-02. Study showing that the visual outcomes and postoperative rotational stability of toric IOLs are similar in patient with and without glaucoma. CrossRefGoogle Scholar
  28. 28.
    Alvani A, Pakravan M, Esfandiari H, Safi S, Yaseri M, Pakravan P. Ocular biometric changes after trabeculectomy. J Ophthalmic Vis Res. 2016;11:296–303.CrossRefGoogle Scholar
  29. 29.
    •• Pakravan M, Alvani A, Esfandiari H, Ghahari E, Yaseri M. Post-trabeculectomy ocular biometric changes. Clin Exp Optom. 2017;100:128–32. Long-term changes in AL and keratometry may affect predicted refractive outcomes and may be circumvented by stage cataract surgery 6 months after filtering surgery. CrossRefGoogle Scholar
  30. 30.
    Bae HW, Lee YH, Kim DW, Lee T, Hong S, Seong GJ, et al. Effect of trabeculectomy on the accuracy of intraocular lens calculations in patients with open-angle glaucoma. Clin Exp Ophthalmol. 2016;44:465–71.CrossRefGoogle Scholar
  31. 31.
    Law SK, Riddle J. Management of cataracts in patients with glaucoma. Int Ophthalmol Clin. 2011;51:1–18.CrossRefGoogle Scholar
  32. 32.
    Law SK, Mansury AM, Vasudev D, Caprioli J. Effects of combined cataract surgery and trabeculectomy with mitomycin C on ocular dimensions. Br J Ophthalmol. 2005;89:1021–5.CrossRefGoogle Scholar
  33. 33.
    Chan JCH, Lai JSM, Tham CCY. Comparison of postoperative refractive outcome in phacotrabeculectomy and phacoemulsification with posterior chamber intraocular lens implantation. J Glaucoma. 2006;15:26–9.CrossRefGoogle Scholar
  34. 34.
    Ong C, Nongpiur M, Peter L, Perera SA. Combined approach to phacoemulsification and trabeculectomy results in less ideal refractive outcomes compared with the sequential approach. J Glaucoma. 2016;25:e873–8.CrossRefGoogle Scholar
  35. 35.
    Stewart WC, Stewart JA, Nelson LA. Ocular surface disease in patients with ocular hypertension and glaucoma. Curr Eye Res. 2011;36:391–8.CrossRefGoogle Scholar
  36. 36.
    Saade CE, Lari HB, Berezina TL, Fechtner RD, Khouri AS. Topical glaucoma therapy and ocular surface disease: a prospective, controlled cohort study. Can J Ophthalmol. 2015;50(2):132–6.  https://doi.org/10.1016/j.jcjo.2014.11.006.CrossRefGoogle Scholar
  37. 37.
    Teichman JT, Ahmed IK. Intraocular lens choices for patients with glaucoma. Curr Opin Ophthalmol. 2010;21:135–43.CrossRefGoogle Scholar
  38. 38.
    Wang SY, Stem MS, Oren G, Shtein R, Lichter PR. Patient-centered and visual quality outcomes of premium cataract surgery: a systematic review. Eur J Ophthalmol. 2017;27(4):387–401.  https://doi.org/10.5301/ejo.5000978 Epub 2017 Apr 24.CrossRefGoogle Scholar
  39. 39.
    Nijkamp MD, Dolders MG, de Brabander J, van den Borne B, Hendrikse F, Nuijts RM. Effectiveness of multifocal intraocular lenses to correct presbyopia after cataract surgery: a randomized controlled trial. Ophthalmology. 2004;111(10):1832–9.CrossRefGoogle Scholar
  40. 40.
    Piovella M, Colonval S, Kapp A, Reiter J, Van Cauwenberge F, Alfonso J. Patient outcomes following implantation with a trifocal toric IOL: twelve-month prospective multicentre study. Eye (Lond). 2018.  https://doi.org/10.1038/s41433-018-0076-5.
  41. 41.
    Rao HL, Jonnadula GB, Addepalli UK, Senthil S, Garudadri CS. Effect of cataract extraction on Visual Field Index in glaucoma. J Glaucoma. 2013;22(2):164–8.  https://doi.org/10.1097/IJG.0b013e31822e8e37. CrossRefGoogle Scholar
  42. 42.
    Lee JW, Morales E, Yu F, Afifi AA, Kim EA, Abdollahi N, et al. Effect of cataract extraction on the visual field decay rate in patients with glaucoma. JAMA Ophthalmol. 2014;132(11):1296–302.  https://doi.org/10.1001/jamaophthalmol.2014.2326.CrossRefGoogle Scholar
  43. 43.
    Koucheki B, Nouri-Mahdavi K, Patel G, Gaasterland D, Caprioli J. Visual field changes after cataract extraction: the AGIS experience. Am J Ophthalmol. 2004;138:1022–8.CrossRefGoogle Scholar
  44. 44.
    Inoue M, Bissen-Miyajima H, Yoshino M, Suzuki T. Wavy horizontal artifacts on optical coherence tomography line-scanning images caused by diffractive multifocal intraocular lenses. J Cataract Refract Surg. 2009;35(7):1239–43.  https://doi.org/10.1016/j.jcrs.2009.04.016.CrossRefGoogle Scholar
  45. 45.
    Artigas JM, Menezo JL, Peris C, Felipe A, Díaz-Llopis M. Image quality with multifocal intraocular lenses and the effect of pupil size: comparison of refractive and hybrid refractive-diffractive designs. J Cataract Refract Surg. 2007;33(12):2111–7.CrossRefGoogle Scholar
  46. 46.
    Shingleton BJ, Crandall AS, Ahmed IK. Pseudoexfoliation and the cataract surgeon: preoperative, intraoperative, and postoperative issues related to intraocular pressure, cataract and intraocular lenses. J Cataract Refract Surg. 2009;35:1101–20.CrossRefGoogle Scholar
  47. 47.
    Shingleton BJ, Marvin AC, Heier JS, O'Donoghue MW, Laul A, Wolff B, et al. Pseudoexfoliation: high risk factors for zonule weakness and concurrent vitrectomy during phacoemulsification. J Cataract Refract Surg. 2010;36:1261–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Ophthalmology, Dean McGee Eye InstituteUniversity of Oklahoma College of MedicineOklahoma CityUSA
  2. 2.Oklahoma Eye SurgeonsOklahoma CityUSA

Personalised recommendations