Advertisement

Clinical Factors for Rapid Endothelial Cell Loss After Corneal Transplantation: Novel Findings From the Aqueous Humor

  • Hiroyuki Yazu
  • Takefumi YamaguchiEmail author
  • Kazuo Tsubota
  • Jun Shimazaki
Cornea (P Hamrah and T Yamaguchi, Section Editors)
  • 3 Downloads
Part of the following topical collections:
  1. Topical Collection on Cornea

Abstract

Purpose of Review

To review the clinical factors for endothelial cell density (ECD) loss and graft failure after corneal transplantation.

Recent Findings

Reduction of ECD after corneal transplantation is associated with various clinical factors, such as the presence of glaucoma, graft diameter, donor age, donor diabetes, and donor gender. Recently, we reported the severe preexisting iris damage was one of the clinical factors for rapid ECD loss and graft failure. We also showed that preexisting iris damage causes chronic elevation of cytokine levels in the aqueous humor (AqH). Furthermore, the higher preoperative levels of specific cytokines in the AqH were associated with a rapid reduction in ECD after penetrating keratoplasty and endothelial keratoplasty.

Summary

Iris damage and preoperative cytokine levels in the AqH can be potential biomarkers for the reduction of ECD after corneal transplantation, although we need to substantiate the exact mechanism of the endothelial cell loss.

Keywords

Corneal transplantation Corneal endothelial cell Iris damage Aqueous humor Cytokine 

Notes

Funding

Part of this work was supported by a Grant-in-Aid for Scientific Research (15K10906, 20383771) from the Japanese Ministry of Education, Culture, Sports, Science, and Technology and a Grant from Uehara Scientific Foundation (TY, Tokyo Japan).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Schmedt T, Silva MM, Ziaei A, Jurkunas U. Molecular bases of corneal endothelial dystrophies. Exp Eye Res. 2012;95:24–34.CrossRefGoogle Scholar
  2. 2.
    Darlington JK, Adrean SD, Schwab IR. Trends of penetrating keratoplasty in the United States from 1980 to 2004. Ophthalmology. 2006;113:2171–5.CrossRefGoogle Scholar
  3. 3.
    Shimazaki J, Amano S, Uno T, Maeda N, Yokoi N, Japan Bullous Keratopathy Study G. National survey on bullous keratopathy in Japan. Cornea. 2007;26:274–8.CrossRefGoogle Scholar
  4. 4.
    Joyce NC, Zhu CC, Harris DL. Relationship among oxidative stress, DNA damage, and proliferative capacity in human corneal endothelium. Invest Ophthalmol Vis Sci. 2009;50:2116–22.CrossRefGoogle Scholar
  5. 5.
    Konomi K, Zhu C, Harris D, Joyce NC. Comparison of the proliferative capacity of human corneal endothelial cells from the central and peripheral areas. Invest Ophthalmol Vis Sci. 2005;46:4086–91.CrossRefGoogle Scholar
  6. 6.
    Matsubara M, Tanishima T. Wound-healing of corneal endothelium in monkey: an autoradiographic study. Jpn J Ophthalmol. 1983;27:444–50.Google Scholar
  7. 7.
    Hoppenreijs VP, Pels E, Vrensen GF, Oosting J, Treffers WF. Effects of human epidermal growth factor on endothelial wound healing of human corneas. Invest Ophthalmol Vis Sci. 1992;33:1946–57.Google Scholar
  8. 8.
    Yee RW, Matsuda M, Schultz RO, Edelhauser HF. Changes in the normal corneal endothelial cellular pattern as a function of age. Curr Eye Res. 1985;4:671–8.CrossRefGoogle Scholar
  9. 9.
    Moller-Pedersen T. A comparative study of human corneal keratocyte and endothelial cell density during aging. Cornea. 1997;16:333–8.Google Scholar
  10. 10.
    Carlson KH, Bourne WM, McLaren JW, Brubaker RF. Variations in human corneal endothelial cell morphology and permeability to fluorescein with age. Exp Eye Res. 1988;47:27–41.CrossRefGoogle Scholar
  11. 11.
    •• Alfawaz AM, Holland GN, Yu F, Margolis MS, Giaconi JA, Aldave AJ. Corneal endothelium in patients with anterior uveitis. Ophthalmology. 2016;123:1637–45 Suggests that chronic inflammation in the aqueous humor causses loss of corneal endothelial cells.CrossRefGoogle Scholar
  12. 12.
    Pillai CT, Dua HS, Azuara-Blanco A, Sarhan AR. Evaluation of corneal endothelium and keratic precipitates by specular microscopy in anterior uveitis. Br J Ophthalmol. 2000;84:1367–71.CrossRefGoogle Scholar
  13. 13.
    Setala K. Corneal endothelial cell density in iridocyclitis. Acta Ophthalmol. 1979;57:277–86.CrossRefGoogle Scholar
  14. 14.
    Ambrose VM, Walters RF, Batterbury M, Spalton DJ, McGill JI. Long-term endothelial cell loss and breakdown of the blood-aqueous barrier in cataract surgery. J Cataract Refract Surg. 1991;17:622–7.CrossRefGoogle Scholar
  15. 15.
    Matsuda M, Miyake K, Inaba M. Long-term corneal endothelial changes after intraocular lens implantation. Am J Ophthalmol. 1988;105:248–52.CrossRefGoogle Scholar
  16. 16.
    Numa A, Nakamura J, Takashima M, Kani K. Long-term corneal endothelial changes after intraocular lens implantation. Anterior vs posterior chamber lenses. Jpn J Ophthalmol. 1993;37:78–87.Google Scholar
  17. 17.
    Ishii N, Yamaguchi T, Yazu H, Satake Y, Yoshida A, Shimazaki J. Factors associated with graft survival and endothelial cell density after Descemet’s stripping automated endothelial keratoplasty. Sci Rep. 2016;6:25276.CrossRefGoogle Scholar
  18. 18.
    Ibrahim O, Yagi-Yukari Y, Kakisu K, Shimazaki J, Yamaguchi T. Association of iris damage with reduction in corneal endothelial cell density after penetrating keratoplasty. Cornea in press.Google Scholar
  19. 19.
    Yagi-Yaguchi Y, Yamaguchi T, Higa K, Suzuki T, Aketa N, Dogru M, et al. Association between corneal endothelial cell densities and elevated cytokine levels in the aqueous humor. Sci Rep. 2017;7:13603.CrossRefGoogle Scholar
  20. 20.
    Suzuki N, Yamaguchi T, Shibata S, et al. Cytokine levels in the aqueous humor are associated with corneal thickness in eyes with bullous keratopathy. Am J Ophthalmol. in press 2018.Google Scholar
  21. 21.
    Sagoo P, Chan G, Larkin DF, George AJ. Inflammatory cytokines induce apoptosis of corneal endothelium through nitric oxide. Invest Ophthalmol Vis Sci. 2004;45:3964–73.CrossRefGoogle Scholar
  22. 22.
    Lapp T, Zaher SS, Haas CT, Becker DL, Thrasivoulou C, Chain BM, et al. Identification of therapeutic targets of inflammatory monocyte recruitment to modulate the allogeneic injury to donor cornea. Invest Ophthalmol Vis Sci. 2015;56:7250–9.CrossRefGoogle Scholar
  23. 23.
    Eom Y, Kwon J, Heo JH, Yun C, Kang SY, Kim HM, et al. The effects of proinflammatory cytokines on the apoptosis of corneal endothelial cells following argon laser iridotomy. Exp Eye Res. 2016;145:140–7.CrossRefGoogle Scholar
  24. 24.
    Lass JH, Benetz BA, Verdier DD, Szczotka-Flynn LB, Ayala AR, Liang W, et al. Corneal endothelial cell loss 3 years after successful Descemet stripping automated endothelial keratoplasty in the cornea preservation time study: a randomized clinical trial. JAMA Ophthalmol. 2017;135:1394–400.CrossRefGoogle Scholar
  25. 25.
    Ohira S, Inoue T, Iwao K, Takahashi E, Tanihara H. Factors influencing aqueous proinflammatory cytokines and growth factors in uveitic glaucoma. PLoS One. 2016;11:e0147080.CrossRefGoogle Scholar
  26. 26.
    Yamaguchi T, Higa K, Suzuki T, Nakayama N, Yagi-Yaguchi Y, Dogru M, et al. Elevated cytokine levels in the aqueous humor of eyes with bullous keratopathy and low endothelial cell density. Invest Ophthalmol Vis Sci. 2016;57:5954–62.CrossRefGoogle Scholar
  27. 27.
    Okumura N, Kitahara M, Okuda H, Hashimoto K, Ueda E, Nakahara M, et al. Sustained activation of the unfolded protein response induces cell death in Fuchs’ endothelial corneal dystrophy. Invest Ophthalmol Vis Sci. 2017;58:3697–707.CrossRefGoogle Scholar
  28. 28.
    Maier P, Heizmann U, Bohringer D, Kern Y, Reinhard T. Predicting the risk for corneal graft rejection by aqueous humor analysis. Mol Vis. 2011;17:1016–23.Google Scholar
  29. 29.
    • Aketa N, Yamaguchi T, Suzuki T, et al. Iris damage is associated with elevated cytokine levels in aqueous humor. Invest Ophthalmol Vis Sci. 2017;58:BIO42–51 This report showed that iris damage is associated with the elevation of proinflammatory cytokine levels in the aqueous humor.CrossRefGoogle Scholar
  30. 30.
    Nishimura JK, Hodge DO, Bourne WM. Initial endothelial cell density and chronic endothelial cell loss rate in corneal transplants with late endothelial failure. Ophthalmology. 1999;106:1962–5.CrossRefGoogle Scholar
  31. 31.
    Bertelmann E, Pleyer U, Rieck P. Risk factors for endothelial cell loss post-keratoplasty. Acta Ophthalmol Scand. 2006;84:766–70.CrossRefGoogle Scholar
  32. 32.
    Writing Committee for the Cornea Donor Study Research G, Lass JH, Benetz BA, et al. Donor age and factors related to endothelial cell loss 10 years after penetrating keratoplasty: Specular Microscopy Ancillary Study. Ophthalmology. 2013;120:2428–35.CrossRefGoogle Scholar
  33. 33.
    •• Lass JH, Beck RW, Benetz BA, et al. Baseline factors related to endothelial cell loss following penetrating keratoplasty. Arch Ophthalmol. 2011;129:1149–54 Highly important study which evaluated clinical factors (donor, recipient) for corneal endothelial cell loss after penetrating keratoplasty.CrossRefGoogle Scholar
  34. 34.
    Benetz BA, Lass JH, Gal RL, Sugar A, Menegay H, Dontchev M, et al. Endothelial morphometric measures to predict endothelial graft failure after penetrating keratoplasty. JAMA Ophthalmol. 2013;131:601–8.CrossRefGoogle Scholar
  35. 35.
    Writing Committee for the Cornea Donor Study Research G, Sugar A, Gal RL, et al. Factors associated with corneal graft survival in the cornea donor study. JAMA Ophthalmol. 2015;133:246–54.CrossRefGoogle Scholar
  36. 36.
    Coster DJ, Lowe MT, Keane MC, Williams KA, Australian Corneal Graft Registry C. A comparison of lamellar and penetrating keratoplasty outcomes: a registry study. Ophthalmology. 2014;121:979–87.CrossRefGoogle Scholar
  37. 37.
    Lass JH, Riddlesworth TD, Gal RL, Kollman C, Benetz BA, Price FW Jr, et al. The effect of donor diabetes history on graft failure and endothelial cell density 10 years after penetrating keratoplasty. Ophthalmology. 2015;122:448–56.CrossRefGoogle Scholar
  38. 38.
    Price MO, Gorovoy M, Benetz BA, Price FW Jr, Menegay HJ, Debanne SM, et al. Descemet’s stripping automated endothelial keratoplasty outcomes compared with penetrating keratoplasty from the Cornea Donor Study. Ophthalmology. 2010;117:438–44.CrossRefGoogle Scholar
  39. 39.
    Anshu A, Price MO, Price FW. Descemet’s stripping endothelial keratoplasty: long-term graft survival and risk factors for failure in eyes with preexisting glaucoma. Ophthalmology. 2012;119:1982–7.CrossRefGoogle Scholar
  40. 40.
    Nahum Y, Mimouni M, Busin M. Risk factors predicting the need for graft exchange after Descemet stripping automated endothelial keratoplasty. Cornea. 2015;34:876–9.CrossRefGoogle Scholar
  41. 41.
    Aldave AJ, Chen JL, Zaman AS, Deng SX, Yu F. Outcomes after DSEK in 101 eyes with previous trabeculectomy and tube shunt implantation. Cornea. 2014;33:223–9.CrossRefGoogle Scholar
  42. 42.
    Kang JJ, Ritterband DC, Lai K, Liebmann JM, Seedor JA. Descemet stripping endothelial keratoplasty in eyes with previous glaucoma surgery. Cornea. 2016;35:1520–5.CrossRefGoogle Scholar
  43. 43.
    Potapenko IO, Samolov B, Armitage MC, Bystrom B, Hjortdal J. Donor endothelial cell count does not correlate with Descemet stripping automated endothelial keratoplasty transplant survival after 2 years of follow-up. Cornea. 2017;36:649–54.CrossRefGoogle Scholar
  44. 44.
    Terry MA, Saad HA, Shamie N, Chen ES, Phillips PM, Friend DJ, et al. Endothelial keratoplasty: the influence of insertion techniques and incision size on donor endothelial survival. Cornea. 2009;28:24–31.CrossRefGoogle Scholar
  45. 45.
    Patel SV. Graft survival and endothelial outcomes in the new era of endothelial keratoplasty. Exp Eye Res. 2012;95:40–7.CrossRefGoogle Scholar
  46. 46.
    Price MO, Bidros M, Gorovoy M, Price FW Jr, Benetz BA, Menegay HJ, et al. Effect of incision width on graft survival and endothelial cell loss after Descemet stripping automated endothelial keratoplasty. Cornea. 2010;29:523–7.CrossRefGoogle Scholar
  47. 47.
    Hong A, Caldwell MC, Kuo AN, Afshari NA. Air bubble-associated endothelial trauma in descemet stripping automated endothelial keratoplasty. Am J Ophthalmol. 2009;148:256–9.CrossRefGoogle Scholar
  48. 48.
    Quek DT, Wong CW, Wong TT, et al. Graft failure and intraocular pressure control after keratoplasty in iridocorneal endothelial syndrome. Am J Ophthalmol. 2015;160:422–9 e1.CrossRefGoogle Scholar
  49. 49.
    Ao M, Feng Y, Xiao G, Xu Y, Hong J. Clinical outcome of Descemet stripping automated endothelial keratoplasty in 18 cases with iridocorneal endothelial syndrome. Eye (Lond). 2017.Google Scholar
  50. 50.
    Capo H, Palmer E, Nicholson DH. Congenital cysts of the iris stroma. Am J Ophthalmol. 1993;116:228–32.CrossRefGoogle Scholar
  51. 51.
    Enright JM, Karacal H, Tsai LM. Floppy iris syndrome and cataract surgery. Curr Opin Ophthalmol. 2017;28:29–34.CrossRefGoogle Scholar
  52. 52.
    Chowdhury UR, Madden BJ, Charlesworth MC, Fautsch MP. Proteome analysis of human aqueous humor. Invest Ophthalmol Vis Sci. 2010;51:4921–31.CrossRefGoogle Scholar
  53. 53.
    Taylor AW, Streilein JW, Cousins SW. Immunoreactive vasoactive intestinal peptide contributes to the immunosuppressive activity of normal aqueous humor. J Immunol. 1994;153:1080–6.Google Scholar
  54. 54.
    •• Streilein JW, Okamoto S, Sano Y, Taylor AW. Neural control of ocular immune privilege. Ann N Y Acad Sci. 2000;917:297–306 Suggests that iris ciliary body cells have immunomodulatory properties, secreting neuropeptides into aqueous humor.CrossRefGoogle Scholar
  55. 55.
    Niederkorn JY. Immune privilege in the anterior chamber of the eye. Crit Rev Immunol. 2002;22:13–46.CrossRefGoogle Scholar
  56. 56.
    Hamrah P, Haskova Z, Taylor AW, Zhang Q, Ksander BR, Dana MR. Local treatment with alpha-melanocyte stimulating hormone reduces corneal allorejection. Transplantation. 2009;88:180–7.CrossRefGoogle Scholar
  57. 57.
    Fleenor DL, Shepard AR, Hellberg PE, Jacobson N, Pang IH, Clark AF. TGFbeta2-induced changes in human trabecular meshwork: implications for intraocular pressure. Invest Ophthalmol Vis Sci. 2006;47:226–34.CrossRefGoogle Scholar
  58. 58.
    •• Freddo TF. A contemporary concept of the blood-aqueous barrier. Prog Retin Eye Res. 2013;32:181–95 Proposed three compartment theory, including iris epithelium as the third partition between the iris stroma and the aqueous humor. Based on this model, iris damage can lead to direct disruption of blood-aqueous barrier.CrossRefGoogle Scholar
  59. 59.
    Walker SD, Brubaker RF, Nagataki S. Hypotony and aqueous humor dynamics in myotonic dystrophy. Invest Ophthalmol Vis Sci. 1982;22:744–51.Google Scholar
  60. 60.
    Wilson WS, Barany E. Iris delay, a neglected factor in aqueous humour dynamics. A study in the cynomolgus monkey (Macaca fascicularis). Exp Eye Res. 1983;37:293–301.CrossRefGoogle Scholar
  61. 61.
    Freddo TF, Bartels SP, Barsotti MF, Kamm RD. The source of proteins in the aqueous humor of the normal rabbit. Invest Ophthalmol Vis Sci. 1990;31:125–37.Google Scholar
  62. 62.
    Barsotti MF, Bartels SP, Freddo TF, Kamm RD. The source of protein in the aqueous humor of the normal monkey eye. Invest Ophthalmol Vis Sci. 1992;33:581–95.Google Scholar
  63. 63.
    Streilein JW, Cousins SW. Aqueous humor factors and their effect on the immune response in the anterior chamber. Curr Eye Res. 1990;9(Suppl):175–82.CrossRefGoogle Scholar
  64. 64.
    Streilein JW, Bradley D. Analysis of immunosuppressive properties of iris and ciliary body cells and their secretory products. Invest Ophthalmol Vis Sci. 1991;32:2700–10.Google Scholar
  65. 65.
    Suzuma I, Mandai M, Suzuma K, Ishida K, Tojo SJ, Honda Y. Contribution of E-selectin to cellular infiltration during endotoxin-induced uveitis. Invest Ophthalmol Vis Sci. 1998;39:1620–30.Google Scholar
  66. 66.
    Suzuma K, Mandai M, Kogishi J, Tojo SJ, Honda Y, Yoshimura N. Role of P-selectin in endotoxin-induced uveitis. Invest Ophthalmol Vis Sci. 1997;38:1610–8.Google Scholar
  67. 67.
    Marie O, Thillaye-Goldenberg B, Naud MC, de Kozak Y. Inhibition of endotoxin-induced uveitis and potentiation of local TNF-alpha and interleukin-6 mRNA expression by interleukin-13. Invest Ophthalmol Vis Sci. 1999;40:2275–82.Google Scholar
  68. 68.
    Yoshida M, Takeuchi M, Streilein JW. Participation of pigment epithelium of iris and ciliary body in ocular immune privilege. 1. Inhibition of T-cell activation in vitro by direct cell-to-cell contact. Invest Ophthalmol Vis Sci. 2000;41:811–21.Google Scholar
  69. 69.
    Ohta K, Wiggert B, Yamagami S, Taylor AW, Streilein JW. Analysis of immunomodulatory activities of aqueous humor from eyes of mice with experimental autoimmune uveitis. J Immunol. 2000;164:1185–92.CrossRefGoogle Scholar
  70. 70.
    Yoshida M, Kezuka T, Streilein JW. Participation of pigment epithelium of iris and ciliary body in ocular immune privilege. 2. Generation of TGF-beta-producing regulatory T cells. Invest Ophthalmol Vis Sci. 2000;41:3862–70.Google Scholar
  71. 71.
    Lemaitre C, Thillaye-Goldenberg B, Naud MC, de Kozak Y. The effects of intraocular injection of interleukin-13 on endotoxin-induced uveitis in rats. Invest Ophthalmol Vis Sci. 2001;42:2022–30.Google Scholar
  72. 72.
    Mo JS, Anderson MG, Gregory M, Smith RS, Savinova OV, Serreze DV, et al. By altering ocular immune privilege, bone marrow-derived cells pathogenically contribute to DBA/2J pigmentary glaucoma. J Exp Med. 2003;197:1335–44.CrossRefGoogle Scholar
  73. 73.
    Sugita S, Futagami Y, Horie S, Mochizuki M. Transforming growth factor beta-producing Foxp3(+)CD8(+)CD25(+) T cells induced by iris pigment epithelial cells display regulatory phenotype and acquire regulatory functions. Exp Eye Res. 2007;85:626–36.CrossRefGoogle Scholar
  74. 74.
    Sugita S, Keino H, Futagami Y, Takase H, Mochizuki M, Stein-Streilein J, et al. B7+ iris pigment epithelial cells convert T cells into CTLA-4+, B7-expressing CD8+ regulatory T cells. Invest Ophthalmol Vis Sci. 2006;47:5376–84.CrossRefGoogle Scholar
  75. 75.
    El-Asrar AM, Struyf S, Kangave D, et al. Cytokine profiles in aqueous humor of patients with different clinical entities of endogenous uveitis. Clin Immunol. 2011;139:177–84.CrossRefGoogle Scholar
  76. 76.
    Kuiper JJ, Mutis T, de Jager W, de Groot-Mijnes JD, Rothova A. Intraocular interleukin-17 and proinflammatory cytokines in HLA-A29-associated birdshot chorioretinopathy. Am J Ophthalmol. 2011;152:177–82 e1.CrossRefGoogle Scholar
  77. 77.
    Matthaei M, Gillessen J, Muether PS, Hoerster R, Bachmann BO, Hueber A, et al. Epithelial-mesenchymal transition (EMT)-related cytokines in the aqueous humor of phakic and pseudophakic Fuchs’ dystrophy eyes. Invest Ophthalmol Vis Sci. 2015;56:2749–54.CrossRefGoogle Scholar
  78. 78.
    Yazu H, Yamaguchi T, Aketa N, Higa K, Suzuki T, Yagi-Yaguchi Y, et al. Preoperative aqueous cytokine levels are associated with endothelial cell loss after Descemet’s stripping automated endothelial keratoplasty. Invest Ophthalmol Vis Sci. 2018;59:612–20.CrossRefGoogle Scholar
  79. 79.
    Sugita S, Usui Y, Horie S, Futagami Y, Yamada Y, Ma J, et al. Human corneal endothelial cells expressing programmed death-ligand 1 (PD-L1) suppress PD-1+ T helper 1 cells by a contact-dependent mechanism. Invest Ophthalmol Vis Sci. 2009;50:263–72.CrossRefGoogle Scholar
  80. 80.
    Kawashima H, Prasad SA, Gregerson DS. Corneal endothelial cells inhibit T cell proliferation by blocking IL-2 production. J Immunol. 1994;153:1982–9.Google Scholar
  81. 81.
    Mi P, Gregerson DS, Kawashima H. Local regulation of immune responses: corneal endothelial cells alter t cell activation and cytokine production. Cytokine. 2000;12:253–64.CrossRefGoogle Scholar
  82. 82.
    Sugita S, Yamada Y, Horie S, Nakamura O, Ishidoh K, Yamamoto Y, et al. Induction of T regulatory cells by cytotoxic T-lymphocyte antigen-2alpha on corneal endothelial cells. Invest Ophthalmol Vis Sci. 2011;52:2598–605.CrossRefGoogle Scholar
  83. 83.
    Sugita S, Kawazoe Y, Yamada Y, Imai A, Horie S, Yamagami S, et al. Inhibitory effect of corneal endothelial cells on IL-17-producing Th17 cells. Br J Ophthalmol. 2012;96:293–9.CrossRefGoogle Scholar
  84. 84.
    Jurkunas UV, Bitar MS, Funaki T, Azizi B. Evidence of oxidative stress in the pathogenesis of Fuchs endothelial corneal dystrophy. Am J Pathol. 2010;177:2278–89.CrossRefGoogle Scholar
  85. 85.
    Ziaei A, Schmedt T, Chen Y, Jurkunas UV. Sulforaphane decreases endothelial cell apoptosis in Fuchs endothelial corneal dystrophy: a novel treatment. Invest Ophthalmol Vis Sci. 2013;54:6724–34.CrossRefGoogle Scholar
  86. 86.
    Benischke AS, Vasanth S, Miyai T, Katikireddy KR, White T, Chen Y, et al. Activation of mitophagy leads to decline in Mfn2 and loss of mitochondrial mass in Fuchs endothelial corneal dystrophy. Sci Rep. 2017;7:6656.CrossRefGoogle Scholar
  87. 87.
    Kim EC, Toyono T, Berlinicke CA, Zack DJ, Jurkunas U, Usui T, et al. Screening and characterization of drugs that protect corneal endothelial cells against unfolded protein response and oxidative stress. Invest Ophthalmol Vis Sci. 2017;58:892–900.CrossRefGoogle Scholar
  88. 88.
    Sakon S, Xue X, Takekawa M, Sasazuki T, Okazaki T, Kojima Y, et al. NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J. 2003;22:3898–909.CrossRefGoogle Scholar
  89. 89.
    Kim JJ, Lee SB, Park JK, Yoo YD. TNF-alpha-induced ROS production triggering apoptosis is directly linked to Romo1 and Bcl-X(L). Cell Death Differ. 2010;17:1420–34.CrossRefGoogle Scholar
  90. 90.
    Khan SY, Awad EM, Oszwald A, Mayr M, Yin X, Waltenberger B, et al. Premature senescence of endothelial cells upon chronic exposure to TNFalpha can be prevented by N-acetyl cysteine and plumericin. Sci Rep. 2017;7:39501.CrossRefGoogle Scholar
  91. 91.
    Moore L, Chen T, Knapp HR Jr, Landon EJ. Energy-dependent calcium sequestration activity in rat liver microsomes. J Biol Chem. 1975;250:4562–8.Google Scholar
  92. 92.
    Miani M, Colli ML, Ladriere L, Cnop M, Eizirik DL. Mild endoplasmic reticulum stress augments the proinflammatory effect of IL-1beta in pancreatic rat beta-cells via the IRE1alpha/XBP1s pathway. Endocrinology. 2012;153:3017–28.CrossRefGoogle Scholar
  93. 93.
    Kharroubi I, Ladriere L, Cardozo AK, Dogusan Z, Cnop M, Eizirik DL. Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms: role of nuclear factor-kappaB and endoplasmic reticulum stress. Endocrinology. 2004;145:5087–96.CrossRefGoogle Scholar
  94. 94.
    Hara T, Mahadevan J, Kanekura K, Hara M, Lu S, Urano F. Calcium efflux from the endoplasmic reticulum leads to beta-cell death. Endocrinology. 2014;155:758–68.CrossRefGoogle Scholar
  95. 95.
    Cardozo AK, Ortis F, Storling J, Feng YM, Rasschaert J, Tonnesen M, et al. Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells. Diabetes. 2005;54:452–61.CrossRefGoogle Scholar
  96. 96.
    Okumura N, Hashimoto K, Kitahara M, Okuda H, Ueda E, Watanabe K, et al. Activation of TGF-beta signaling induces cell death via the unfolded protein response in Fuchs endothelial corneal dystrophy. Sci Rep. 2017;7:6801.CrossRefGoogle Scholar
  97. 97.
    Yagi-Yaguchi Y, Yamaguchi T, Higa K, Suzuki T, Yazu H, Aketa N, et al. Preoperative aqueous cytokine levels are associated with a rapid reduction in endothelial cells after penetrating keratoplasty. Am J Ophthalmol. 2017;181:166–73.CrossRefGoogle Scholar
  98. 98.
    Aketa N, Yamaguchi T, Asato T, Yagi-Yaguchi Y, Suzuki T, Higa K, et al. Elevated aqueous cytokine levels in eyes with ocular surface diseases. Am J Ophthalmol. 2017;184:42–51.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hiroyuki Yazu
    • 1
    • 2
    • 3
  • Takefumi Yamaguchi
    • 1
    • 2
    Email author
  • Kazuo Tsubota
    • 2
  • Jun Shimazaki
    • 1
    • 2
  1. 1.Department of OphthalmologyTokyo Dental College Ichikawa General HospitalIchikawaJapan
  2. 2.Department of OphthalmologyKeio University School of MedicineTokyoJapan
  3. 3.Department of OphthalmologyTsurumi University School of Dental MedicineYokohamaJapan

Personalised recommendations