Advertisement

Trabecular Meshwork Regeneration—a Potential Treatment for Glaucoma

  • Alexander Castro
  • Yiqin DuEmail author
Regenerative Medicine in Ophthalmology (D. Myung, Section Editor)
  • 12 Downloads
Part of the following topical collections:
  1. Topical Collection on Regenerative Medicine in Ophthalmology

Abstract

Purpose of review

In this review, we overview the pathophysiology of primary open-angle glaucoma as it relates to the trabecular meshwork (TM), exploring modes of TM dysfunction and regeneration via stem cell therapies.

Recent Findings

Stem cells from a variety of sources, including trabecular meshwork, mesenchymal, adipose, and induced pluripotent stem cells, have shown the potential to differentiate into TM cells in vitro or in vivo and to regenerate the TM in vivo, lowering intraocular pressure (IOP) and reducing glaucomatous retinal ganglion cell damage.

Summary

Stem cell therapies for TM regeneration provide a robust and promising suite of treatments for eventual lowering of IOP and prevention of glaucomatous vision loss in humans in the future. Further investigation into stem cell homing mechanisms and the safety of introducing these cells into human anterior chamber, for instance, are required before clinical applications in treating glaucoma patients.

Keywords

Trabecular meshwork Glaucoma Regeneration Stem cells Intraocular pressure 

Notes

Funding information

This work was supported by NIH grants EY025643 (Y.D.) and P30-EY008098; Eye and Ear Foundation (Pittsburgh, PA); Research to Prevent Blindness; University of Pittsburgh Summer Premedical Academic Enrichment Program (SPAEP) (A.C.).

Compliance with Ethical Standards

Conflict of Interest

Alexander Castro declares that he has no conflicts of interest. University of Pittsburgh owns a patent “trabecular meshwork stem cells” with Yiqin Du as one of the inventors.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262–7.  https://doi.org/10.1136/bjo.2005.081224.Google Scholar
  2. 2.
    Kwon YH, Fingert JH, Kuehn MH, Alward WL. Primary open-angle glaucoma. N Engl J Med. 2009;360(11):1113–24.  https://doi.org/10.1056/NEJMra0804630.Google Scholar
  3. 3.
    Cook C, Foster P. Epidemiology of glaucoma: what’s new? Can J Ophthalmol. 2012;47(3):223–6.  https://doi.org/10.1016/j.jcjo.2012.02.003.Google Scholar
  4. 4.
    Alvarado J, Murphy C, Juster R. Trabecular meshwork cellularity in primary open-angle glaucoma and nonglaucomatous normals. Ophthalmology. 1984;91(6):564–79.Google Scholar
  5. 5.
    Grierson I, Howes RC. Age-related depletion of the cell population in the human trabecular meshwork. Eye (Lond). 1987;1(Pt 2):204–10.  https://doi.org/10.1038/eye.1987.38.Google Scholar
  6. 6.
    Gabelt BT, Kaufman PL. Changes in aqueous humor dynamics with age and glaucoma. Prog Retin Eye Res. 2005;24(5):612–37.  https://doi.org/10.1016/j.preteyeres.2004.10.003.Google Scholar
  7. 7.
    Gong H, Swain D. The histopathological changes in the trabecular outflow pathway and their possible effects on aqueous outflow in eyes with primary open-angle glaucoma. In: Samples PAKJR, editor. Glaucoma research and clinical advances 2016–2018 Kugler. Amsterdam; 2016. p. 17–40.Google Scholar
  8. 8.
    Kopczynski CC, Epstein DL. Emerging trabecular outflow drugs. J Ocul Pharmacol Ther. 2014;30(2–3):85–7.  https://doi.org/10.1089/jop.2013.0197.Google Scholar
  9. 9.
    Du Y, Roh DS, Mann MM, Funderburgh ML, Funderburgh JL, Schuman JS. Multipotent stem cells from trabecular meshwork become phagocytic TM cells. Invest Ophthalmol Vis Sci. 2012;53(3):1566–75.  https://doi.org/10.1167/iovs.11-9134.Google Scholar
  10. 10.
    Du Y, Yun H, Yang E, Schuman JS. Stem cells from trabecular meshwork home to TM tissue in vivo. Invest Ophthalmol Vis Sci. 2013;54(2):1450–9.  https://doi.org/10.1167/iovs.12-11056.Google Scholar
  11. 11.
    Manuguerra-Gagne R, Boulos PR, Ammar A, Leblond FA, Krosl G, Pichette V, et al. Transplantation of mesenchymal stem cells promotes tissue regeneration in a glaucoma model through laser-induced paracrine factor secretion and progenitor cell recruitment. Stem Cells. 2013;31(6):1136–48.  https://doi.org/10.1002/stem.1364.Google Scholar
  12. 12.
    •• Abu-Hassan DW, Li X, Ryan EI, Acott TS, Kelley MJ. Induced pluripotent stem cells restore function in a human cell loss model of open-angle glaucoma. Stem Cells. 2015;33(3):751–61.  https://doi.org/10.1002/stem.1885 This study shows that exogenous TM-like cells derived from iPSC restored the TM function in an ex vivo tissue perfusion model.Google Scholar
  13. 13.
    Roubeix C, Godefroy D, Mias C, Sapienza A, Riancho L, Degardin J, et al. Intraocular pressure reduction and neuroprotection conferred by bone marrow-derived mesenchymal stem cells in an animal model of glaucoma. Stem Cell Res Ther. 2015;6:177.  https://doi.org/10.1186/s13287-015-0168-0.Google Scholar
  14. 14.
    •• Yun H, Zhou Y, Wills A, Du Y. Stem cells in the trabecular meshwork for regulating intraocular pressure. J Ocul Pharmacol Ther. 2016;32(5):253–60.  https://doi.org/10.1089/jop.2016.0005 This study illustrated the characteristics of trabecular meshwork stem cells and their niche as well as other stem cells types for TM regeneration and suitable animal models for studying stem cell-based therapies.Google Scholar
  15. 15.
    •• Zhu W, Gramlich OW, Laboissonniere L, Jain A, Sheffield VC, Trimarchi JM, et al. Transplantation of iPSC-derived TM cells rescues glaucoma phenotypes in vivo. Proc Natl Acad Sci U S A. 2016;113(25):E3492–500.  https://doi.org/10.1073/pnas.1604153113 This study shows that iPSC-derived TM cells prevented IOP elevation in a mouse glaucoma model and prevented retinal ganalion cell loss. It indicates that stem cel-based therapy is feasible for TM regeneration and preventing vision loss in glaucoma.Google Scholar
  16. 16.
    Zhu W, Jain A, Gramlich OW, Tucker BA, Sheffield VC, Kuehn MH. Restoration of aqueous humor outflow following transplantation of iPSC-derived trabecular meshwork cells in a transgenic mouse model of glaucoma. Invest Ophthalmol Vis Sci. 2017;58(4):2054–62.  https://doi.org/10.1167/iovs.16-20672.Google Scholar
  17. 17.
    •• Yun H, Wang Y, Zhou Y, Wang K, Sun M, Stolz DB, et al. Human stem cells home to and repair laser-damaged trabecular meshwork in a mouse model. Commun Biol. 2018;1:216.  https://doi.org/10.1038/s42003-018-0227-z This study shows that human trabecular meshwork stem cells can successfully home to laser-damaged TM region and repair the damage tissue. It also explored the stem cell homing and regeneration mechanisms.Google Scholar
  18. 18.
    Keller KE, Acott TS. The Juxtacanalicular region of ocular trabecular meshwork: a tissue with a unique extracellular matrix and specialized function. J Ocul Biol. 2013;1(1):3.Google Scholar
  19. 19.
    Chhunchha B, Singh P, Stamer WD, Singh DP. Prdx6 retards senescence and restores trabecular meshwork cell health by regulating reactive oxygen species. Cell Death Discov. 2017;3:17060.  https://doi.org/10.1038/cddiscovery.2017.60.Google Scholar
  20. 20.
    Bermudez JY, Montecchi-Palmer M, Mao W, Clark AF. Cross-linked actin networks (CLANs) in glaucoma. Exp Eye Res. 2017;159:16–22.  https://doi.org/10.1016/j.exer.2017.02.010.Google Scholar
  21. 21.
    •• Stamer WD, Clark AF. The many faces of the trabecular meshwork cell. Exp Eye Res. 2017;158:112–23.  https://doi.org/10.1016/j.exer.2016.07.009 This study points the different types of trabecular meshwork cells and their characteristics.Google Scholar
  22. 22.
    Acott TS, Kelley MJ, Keller KE, Vranka JA, Abu-Hassan DW, Li X, et al. Intraocular pressure homeostasis: maintaining balance in a high-pressure environment. J Ocul Pharmacol Ther. 2014;30(2–3):94–101.  https://doi.org/10.1089/jop.2013.0185.Google Scholar
  23. 23.
    Yun H, Lathrop KL, Yang E, Sun M, Kagemann L, Fu V, et al. A laser-induced mouse model with long-term intraocular pressure elevation. PLoS One. 2014;9(9):e107446.  https://doi.org/10.1371/journal.pone.0107446.Google Scholar
  24. 24.
    Vranka JA, Bradley JM, Yang YF, Keller KE, Acott TS. Mapping molecular differences and extracellular matrix gene expression in segmental outflow pathways of the human ocular trabecular meshwork. PLoS One. 2015;10(3):e0122483.  https://doi.org/10.1371/journal.pone.0122483.Google Scholar
  25. 25.
    Chang JY, Folz SJ, Laryea SN, Overby DR. Multi-scale analysis of segmental outflow patterns in human trabecular meshwork with changing intraocular pressure. J Ocul Pharmacol Ther. 2014;30(2–3):213–23.  https://doi.org/10.1089/jop.2013.0182.Google Scholar
  26. 26.
    Pederson JE, Toris CB. Uveoscleral outflow: diffusion or flow? Invest Ophthalmol Vis Sci. 1987;28(6):1022–4.Google Scholar
  27. 27.
    Johnson M, McLaren JW, Overby DR. Unconventional aqueous humor outflow: a review. Exp Eye Res. 2017;158:94–111.  https://doi.org/10.1016/j.exer.2016.01.017.Google Scholar
  28. 28.
    Baleriola J, Garcia-Feijoo J, Martinez-de-la-Casa JM, Fernandez-Cruz A, de la Rosa EJ, Fernandez-Durango R. Apoptosis in the trabecular meshwork of glaucomatous patients. Mol Vis. 2008;14:1513–6.Google Scholar
  29. 29.
    Liton PB, Challa P, Stinnett S, Luna C, Epstein DL, Gonzalez P. Cellular senescence in the glaucomatous outflow pathway. Exp Gerontol. 2005;40(8–9):745–8.  https://doi.org/10.1016/j.exger.2005.06.005.Google Scholar
  30. 30.
    Zhang X, Ognibene CM, Clark AF, Yorio T. Dexamethasone inhibition of trabecular meshwork cell phagocytosis and its modulation by glucocorticoid receptor beta. Exp Eye Res. 2007;84(2):275–84.  https://doi.org/10.1016/j.exer.2006.09.022.Google Scholar
  31. 31.
    Wang K, Li G, Read AT, Navarro I, Mitra AK, Stamer WD, et al. The relationship between outflow resistance and trabecular meshwork stiffness in mice. Sci Rep. 2018;8(1):5848.  https://doi.org/10.1038/s41598-018-24165-w.Google Scholar
  32. 32.
    Izzotti A, Sacca SC, Longobardi M, Cartiglia C. Mitochondrial damage in the trabecular meshwork of patients with glaucoma. Arch Ophthalmol. 2010;128(6):724–30.  https://doi.org/10.1001/archophthalmol.2010.87.Google Scholar
  33. 33.
    Pulliero A, Seydel A, Camoirano A, Sacca SC, Sandri M, Izzotti A. Oxidative damage and autophagy in the human trabecular meshwork as related with ageing. PLoS One. 2014;9(6):e98106.  https://doi.org/10.1371/journal.pone.0098106.Google Scholar
  34. 34.
    Sacca SC, Pascotto A, Camicione P, Capris P, Izzotti A. Oxidative DNA damage in the human trabecular meshwork: clinical correlation in patients with primary open-angle glaucoma. Arch Ophthalmol. 2005;123(4):458–63.  https://doi.org/10.1001/archopht.123.4.458.Google Scholar
  35. 35.
    Goel M, Picciani RG, Lee RK, Bhattacharya SK. Aqueous humor dynamics: a review. Open Ophthalmol J. 2010;4:52–9.  https://doi.org/10.2174/1874364101004010052.Google Scholar
  36. 36.
    Aliancy J, Stamer WD, Wirostko B. A review of nitric oxide for the treatment of glaucomatous disease. Ophthalmol Therapy. 2017;6(2):221–32.  https://doi.org/10.1007/s40123-017-0094-6.Google Scholar
  37. 37.
    Weinreb RN, Scassellati Sforzolini B, Vittitow J, Liebmann J. Latanoprostene bunod 0.024% versus Timolol maleate 0.5% in subjects with open-angle glaucoma or ocular hypertension: the APOLLO study. Ophthalmology. 2016;123(5):965–73.  https://doi.org/10.1016/j.ophtha.2016.01.019.Google Scholar
  38. 38.
    Liu JHK, Slight JR, Vittitow JL, Scassellati Sforzolini B, Weinreb RN. Efficacy of latanoprostene bunod 0.024% compared with timolol 0.5% in lowering intraocular pressure over 24 hours. Am J Ophthalmol. 2016;169:249–57.  https://doi.org/10.1016/j.ajo.2016.04.019.Google Scholar
  39. 39.
    Inoue T, Tanihara H. Rho-associated kinase inhibitors: a novel glaucoma therapy. Prog Retin Eye Res. 2013;37:1–12.  https://doi.org/10.1016/j.preteyeres.2013.05.002.Google Scholar
  40. 40.
    Tanna AP, Johnson M. Rho kinase inhibitors as a novel treatment for glaucoma and ocular hypertension. Ophthalmology. 2018;125(11):1741–56.  https://doi.org/10.1016/j.ophtha.2018.04.040.Google Scholar
  41. 41.
    Rao VP, Epstein DL. Rho GTPase/rho kinase inhibition as a novel target for the treatment of glaucoma. BioDrugs. 2007;21(3):167–77.  https://doi.org/10.2165/00063030-200721030-00004.Google Scholar
  42. 42.
    Zhang M, Maddala R, Rao PV. Novel molecular insights into RhoA GTPase-induced resistance to aqueous humor outflow through the trabecular meshwork. Am J Physiol Cell Physiol. 2008;295(5):C1057–70.  https://doi.org/10.1152/ajpcell.00481.2007.Google Scholar
  43. 43.
    Wang RF, Williamson JE, Kopczynski C, Serle JB. Effect of 0.04% AR-13324, a ROCK, and norepinephrine transporter inhibitor, on aqueous humor dynamics in normotensive monkey eyes. J Glaucoma. 2015;24(1):51–4.  https://doi.org/10.1097/IJG.0b013e3182952213.Google Scholar
  44. 44.
    Wang SK, Chang RT. An emerging treatment option for glaucoma: rho kinase inhibitors. Clin Ophthalmol. 2014;8:883–90.  https://doi.org/10.2147/OPTH.S41000.Google Scholar
  45. 45.
    Lin CW, Sherman B, Moore LA, Laethem CL, Lu DW, Pattabiraman PP, et al. Discovery and preclinical development of netarsudil, a novel ocular hypotensive agent for the treatment of glaucoma. J Ocul Pharmacol Ther. 2018;34(1–2):40–51.  https://doi.org/10.1089/jop.2017.0023.Google Scholar
  46. 46.
    Kiel JW, Kopczynski CC. Effect of AR-13324 on episcleral venous pressure in Dutch belted rabbits. J Ocul Pharmacol Ther. 2015;31(3):146–51.  https://doi.org/10.1089/jop.2014.0146.Google Scholar
  47. 47.
    Inazaki H, Kobayashi S, Anzai Y, Satoh H, Sato S, Inoue M, et al. One-year efficacy of adjunctive use of Ripasudil, a rho-kinase inhibitor, in patients with glaucoma inadequately controlled with maximum medical therapy. Graefes Arch Clin Exp Ophthalmol. 2017;255(10):2009–15.  https://doi.org/10.1007/s00417-017-3727-5.Google Scholar
  48. 48.
    Ren R, Li G, Le TD, Kopczynski C, Stamer WD, Gong H. Netarsudil increases outflow facility in human eyes through multiple mechanisms. Invest Ophthalmol Vis Sci. 2016;57(14):6197–209.  https://doi.org/10.1167/iovs.16-20189.Google Scholar
  49. 49.
    Li G, Mukherjee D, Navarro I, Ashpole NE, Sherwood JM, Chang J, et al. Visualization of conventional outflow tissue responses to netarsudil in living mouse eyes. Eur J Pharmacol. 2016;787:20–31.  https://doi.org/10.1016/j.ejphar.2016.04.002.Google Scholar
  50. 50.
    Dhamodaran K, Subramani M, Ponnalagu M, Shetty R, Das D. Ocular stem cells: a status update! Stem Cell Res Ther. 2014;5(2):56.  https://doi.org/10.1186/scrt445.Google Scholar
  51. 51.
    Fan BJ, Wiggs JL. Glaucoma: genes, phenotypes, and new directions for therapy. J Clin Invest. 2010;120(9):3064–72.  https://doi.org/10.1172/JCI43085.Google Scholar
  52. 52.
    Saheb H, Ahmed II. Micro-invasive glaucoma surgery: current perspectives and future directions. Curr Opin Ophthalmol. 2012;23(2):96–104.  https://doi.org/10.1097/ICU.0b013e32834ff1e7.Google Scholar
  53. 53.
    Zhou R, Caspi RR. Ocular immune privilege. F1000 Biol Rep 2010;2.  https://doi.org/10.3410/B2-3.
  54. 54.
    Pearson C, Martin K. Stem cell approaches to glaucoma: from aqueous outflow modulation to retinal neuroprotection. Prog Brain Res. 2015;220:241–56.  https://doi.org/10.1016/bs.pbr.2015.04.005.Google Scholar
  55. 55.
    Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311(18):1901–11.  https://doi.org/10.1001/jama.2014.3192.Google Scholar
  56. 56.
    Chamling X, Sluch VM, Zack DJ. The potential of human stem cells for the study and treatment of glaucoma. Invest Ophthalmol Vis Sci. 2016;57(5):ORSFi1–6.  https://doi.org/10.1167/iovs.15-18590.Google Scholar
  57. 57.
    Raviola G. Schwalbe line’s cells: a new cell type in the trabecular meshwork of Macaca mulatta. Invest Ophthalmol Vis Sci. 1982;22(1):45–56.Google Scholar
  58. 58.
    Acott TS, Samples JR, Bradley JM, Bacon DR, Bylsma SS, Van Buskirk EM. Trabecular repopulation by anterior trabecular meshwork cells after laser trabeculoplasty. Am J Ophthalmol. 1989;107(1):1–6.Google Scholar
  59. 59.
    Gonzalez P, Epstein DL, Luna C, Liton PB. Characterization of free-floating spheres from human trabecular meshwork (HTM) cell culture in vitro. Exp Eye Res. 2006;82(6):959–67.  https://doi.org/10.1016/j.exer.2005.10.006.Google Scholar
  60. 60.
    Braunger BM, Ademoglu B, Koschade SE, Fuchshofer R, Gabelt BT, Kiland JA, et al. Identification of adult stem cells in Schwalbe’s line region of the primate eye. Invest Ophthalmol Vis Sci. 2014;55(11):7499–507.  https://doi.org/10.1167/iovs.14-14872.Google Scholar
  61. 61.
    Tay CY, Sathiyanathan P, Chu SW, Stanton LW, Wong TT. Identification and characterization of mesenchymal stem cells derived from the trabecular meshwork of the human eye. Stem Cells Dev. 2012;21(9):1381–90.  https://doi.org/10.1089/scd.2011.0655.Google Scholar
  62. 62.
    Whikehart DR, Parikh CH, Vaughn AV, Mishler K, Edelhauser HF. Evidence suggesting the existence of stem cells for the human corneal endothelium. Mol Vis. 2005;11:816–24.Google Scholar
  63. 63.
    McGowan SL, Edelhauser HF, Pfister RR, Whikehart DR. Stem cell markers in the human posterior limbus and corneal endothelium of unwounded and wounded corneas. Mol Vis. 2007;13:1984–2000.Google Scholar
  64. 64.
    Kelley MJ, Rose AY, Keller KE, Hessle H, Samples JR, Acott TS. Stem cells in the trabecular meshwork: present and future promises. Exp Eye Res. 2009;88(4):747–51.  https://doi.org/10.1016/j.exer.2008.10.024.Google Scholar
  65. 65.
    Nadri S, Yazdani S, Arefian E, Gohari Z, Eslaminejad MB, Kazemi B, et al. Mesenchymal stem cells from trabecular meshwork become photoreceptor-like cells on amniotic membrane. Neurosci Lett. 2013;541:43–8.  https://doi.org/10.1016/j.neulet.2012.12.055.Google Scholar
  66. 66.
    Zhang Y, Cai S, Tseng SCG, Zhu YT. Isolation and expansion of multipotent progenitors from human trabecular meshwork. Sci Rep. 2018;8(1):2814.  https://doi.org/10.1038/s41598-018-21098-2.Google Scholar
  67. 67.
    Snider EJ, Vannatta RT, Schildmeyer L, Stamer WD, Ethier CR. Characterizing differences between MSCs and TM cells: toward autologous stem cell therapies for the glaucomatous trabecular meshwork. J Tissue Eng Regen Med. 2018;12(3):695–704.  https://doi.org/10.1002/term.2488.Google Scholar
  68. 68.
    Ding QJ, Zhu W, Cook AC, Anfinson KR, Tucker BA, Kuehn MH. Induction of trabecular meshwork cells from induced pluripotent stem cells. Invest Ophthalmol Vis Sci. 2014;55(11):7065–72.  https://doi.org/10.1167/iovs.14-14800.Google Scholar
  69. 69.
    •• Keller KE, Bhattacharya SK, Borras T, Brunner TM, Chansangpetch S, Clark AF, et al. Consensus recommendations for trabecular meshwork cell isolation, characterization and culture. Exp Eye Res. 2018;171:164–73.  https://doi.org/10.1016/j.exer.2018.03.001 This is a direction for trabecular meshwork studies which shows how to isolate and culture TM cells and how to characterize and identify TM cells.Google Scholar
  70. 70.
    Fu CT, Sretavan D. Laser-induced ocular hypertension in albino CD-1 mice. Invest Ophthalmol Vis Sci. 2010;51(2):980–90.  https://doi.org/10.1167/iovs.09-4324.Google Scholar
  71. 71.
    Kwong JM, Vo N, Quan A, Nam M, Kyung H, Yu F, et al. The dark phase intraocular pressure elevation and retinal ganglion cell degeneration in a rat model of experimental glaucoma. Exp Eye Res. 2013;112:21–8.  https://doi.org/10.1016/j.exer.2013.04.008.Google Scholar
  72. 72.
    Levkovitch-Verbin H, Quigley HA, Martin KR, Valenta D, Baumrind LA, Pease ME. Translimbal laser photocoagulation to the trabecular meshwork as a model of glaucoma in rats. Invest Ophthalmol Vis Sci. 2002;43(2):402–10.Google Scholar
  73. 73.
    Yu WY, Sheridan C, Grierson I, Mason S, Kearns V, Lo AC, et al. Progenitors for the corneal endothelium and trabecular meshwork: a potential source for personalized stem cell therapy in corneal endothelial diseases and glaucoma. J Biomed Biotechnol. 2011;2011:412743.  https://doi.org/10.1155/2011/412743.Google Scholar
  74. 74.
    Fingert JH, Stone EM, Sheffield VC, Alward WL. Myocilin glaucoma. Surv Ophthalmol. 2002;47(6):547–61.Google Scholar
  75. 75.
    Zode GS, Kuehn MH, Nishimura DY, Searby CC, Mohan K, Grozdanic SD, et al. Reduction of ER stress via a chemical chaperone prevents disease phenotypes in a mouse model of primary open angle glaucoma. J Clin Invest. 2011;121(9):3542–53.  https://doi.org/10.1172/JCI58183.Google Scholar
  76. 76.
    Junglas B, Kuespert S, Seleem AA, Struller T, Ullmann S, Bosl M, et al. Connective tissue growth factor causes glaucoma by modifying the actin cytoskeleton of the trabecular meshwork. Am J Pathol. 2012;180(6):2386–403.  https://doi.org/10.1016/j.ajpath.2012.02.030.Google Scholar
  77. 77.
    Zode GS, Sharma AB, Lin X, Searby CC, Bugge K, Kim GH, et al. Ocular-specific ER stress reduction rescues glaucoma in murine glucocorticoid-induced glaucoma. J Clin Invest. 2014;124(5):1956–65.  https://doi.org/10.1172/JCI69774.Google Scholar
  78. 78.
    •• Patel GC, Phan TN, Maddineni P, Kasetti RB, Millar JC, Clark AF, et al. Dexamethasone-induced ocular hypertension in mice: effects of myocilin and route of administration. Am J Pathol. 2017;187(4):713–23.  https://doi.org/10.1016/j.ajpath.2016.12.003 This study shows a steroid mouse glaucoma model which could be widely used in glaucoma research.Google Scholar
  79. 79.
    Irhimeh MR, Fitton JH, Lowenthal RM. Fucoidan ingestion increases the expression of CXCR4 on human CD34+ cells. Exp Hematol. 2007;35(6):989–94.  https://doi.org/10.1016/j.exphem.2007.02.009.Google Scholar
  80. 80.
    Tchernychev B, Ren Y, Sachdev P, Janz JM, Haggis L, O'Shea A, et al. Discovery of a CXCR4 agonist pepducin that mobilizes bone marrow hematopoietic cells. Proc Natl Acad Sci U S A. 2010;107(51):22255–9.  https://doi.org/10.1073/pnas.1009633108.Google Scholar
  81. 81.
    Stern JH, Tian Y, Funderburgh J, Pellegrini G, Zhang K, Goldberg JL, et al. Regenerating eye tissues to preserve and restore vision. Cell Stem Cell. 2018;23(3):453.  https://doi.org/10.1016/j.stem.2018.08.014.Google Scholar
  82. 82.
    Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci. 2017;18(9).  https://doi.org/10.3390/ijms18091852.
  83. 83.
    Drago D, Cossetti C, Iraci N, Gaude E, Musco G, Bachi A, et al. The stem cell secretome and its role in brain repair. Biochimie. 2013;95(12):2271–85.  https://doi.org/10.1016/j.biochi.2013.06.020.Google Scholar
  84. 84.
    •• Klingeborn M, Dismuke WM, Bowes Rickman C, Stamer WD. Roles of exosomes in the normal and diseased eye. Prog Retin Eye Res. 2017;59:158–77.  https://doi.org/10.1016/j.preteyeres.2017.04.004 This study reviews the basics and applications of exosomes and discusses future research studies for exosomes in the eye.Google Scholar
  85. 85.
    Zheng G, Huang R, Qiu G, Ge M, Wang J, Shu Q, et al. Mesenchymal stromal cell-derived extracellular vesicles: regenerative and immunomodulatory effects and potential applications in sepsis. Cell Tissue Res. 2018;374(1):1–15.  https://doi.org/10.1007/s00441-018-2871-5.Google Scholar
  86. 86.
    Mead B, Tomarev S. Bone marrow-derived mesenchymal stem cells-derived exosomes promote survival of retinal ganglion cells through miRNA-dependent mechanisms. Stem Cells Transl Med. 2017;6(4):1273–85.  https://doi.org/10.1002/sctm.16-0428.Google Scholar
  87. 87.
    Mead B, Amaral J, Tomarev S. Mesenchymal stem cell-derived small extracellular vesicles promote neuroprotection in rodent models of glaucoma. Invest Ophthalmol Vis Sci. 2018;59(2):702–14.  https://doi.org/10.1167/iovs.17-22855.Google Scholar
  88. 88.
    Mead B, Ahmed Z, Tomarev S. Mesenchymal stem cell-derived small extracellular vesicles promote neuroprotection in a genetic DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci. 2018;59(13):5473–80.  https://doi.org/10.1167/iovs.18-25310.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of OphthalmologyUniversity of PittsburghPittsburghUSA
  2. 2.University of VirginiaCharlottesvilleUSA
  3. 3.McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghUSA
  4. 4.Department of Developmental BiologyUniversity of PittsburghPittsburghUSA

Personalised recommendations