Advertisement

Current Ophthalmology Reports

, Volume 7, Issue 1, pp 37–44 | Cite as

New Insights Into Corneal Endothelial Regeneration

  • Mansab Jafri
  • Kathryn ColbyEmail author
Regenerative Medicine in Ophthalmology (D Myung, Section Editor)
  • 55 Downloads
Part of the following topical collections:
  1. Topical Collection on Ocular Microbiology and Immunology

Abstract

Purpose of Review

This article reviews our current understanding of the regenerative capacity of the corneal endothelium and critically evaluates new and important research in the treatment of endothelial dysfunction.

Recent Findings

The development and application of new surgical (Descemet’s membrane stripping only), pharmacologic (rho kinase inhibitors, such as ripasudil), and injectable cell culture modalities for the treatment of endothelial dysfunction have sparked debate in the cornea world and may revolutionize future clinical practice.

Summary

The exact mechanisms involved in corneal endothelial regeneration remain elusive. The latest treatment strategies for endothelial dysfunction have the potential to transform our previous perceptions of endothelial physiology by eliciting new and exciting research questions for future investigations.

Keywords

Corneal endothelial regeneration Descemet stripping only Cell culture Fuchs dystrophy Descemetorhexis Rho kinase inhibitors 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Bahn CF, Falls HF, Varley GA, Meyer RF, Edelhauser HF, Bourne WM. Classification of corneal endothelial disorders based on neural crest origin. Ophthalmology. 1984;91(6):558–63.CrossRefPubMedGoogle Scholar
  2. 2.
    Joyce NC. Proliferative capacity of the corneal endothelium. Prog Retin Eye Res. 2003;22(3):359–89.CrossRefPubMedGoogle Scholar
  3. 3.
    Bourne WM. Biology of the corneal endothelium in health and disease. Eye (Lond). 2003;17(8):912–8.  https://doi.org/10.1038/sj.eye.6700559.CrossRefGoogle Scholar
  4. 4.
    Beebe DC. Maintaining transparency: a review of the developmental physiology and pathophysiology of two avascular tissues. Semin Cell Dev Biol. 2008;19(2):125–33.  https://doi.org/10.1016/j.semcdb.2007.08.014.CrossRefPubMedGoogle Scholar
  5. 5.
    Johnson DH, Bourne WM, Campbell RJ. The ultrastructure of Descemet’s membrane. I. Changes with age in normal corneas. Arch Ophthalmol. 1982;100(12):1942–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Vallabh NA, Romano V, Willoughby CE. Mitochondrial dysfunction and oxidative stress in corneal disease. Mitochondrion. 2017;36:103–13.  https://doi.org/10.1016/j.mito.2017.05.009.CrossRefPubMedGoogle Scholar
  7. 7.
    Ohkoshi K, Ishida N, Yamaguchi T, Kanki K. Corneal endothelium in a case of mitochondrial encephalomyopathy (Kearns-Sayre syndrome). Cornea. 1989;8(3):210–4.CrossRefPubMedGoogle Scholar
  8. 8.
    Albin RL. Fuch’s corneal dystrophy in a patient with mitochondrial DNA mutations. J Med Genet. 1998;35(3):258–9.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chang TS, Johns DR, Stark WJ, Drachman DB, Green WR. Corneal decompensation in mitochondrial ophthalmoplegia plus (Kearns-Sayre) syndrome. A clinicopathologic case report. Cornea. 1994;13(3):269–73.CrossRefPubMedGoogle Scholar
  10. 10.
    Chang TS, Johns DR, Walker D, de la Cruz Z, Maumence IH, Green WR. Ocular clinicopathologic study of the mitochondrial encephalomyopathy overlap syndromes. Arch Ophthalmol. 1993;111(9):1254–62.CrossRefPubMedGoogle Scholar
  11. 11.
    Murphy C, Alvarado J, Juster R, Maglio M. Prenatal and postnatal cellularity of the human corneal endothelium. A quantitative histologic study. Invest Ophthalmol Vis Sci. 1984;25(3):312–22.PubMedGoogle Scholar
  12. 12.
    Koh SW, Waschek JA. Corneal endothelial cell survival in organ cultures under acute oxidative stress: effect of VIP. Invest Ophthalmol Vis Sci. 2000;41(13):4085–92.PubMedGoogle Scholar
  13. 13.
    Jurkunas UV, Bitar MS, Funaki T, Azizi B. Evidence of oxidative stress in the pathogenesis of Fuchs endothelial corneal dystrophy. Am J Pathol. 2010;177(5):2278–89.  https://doi.org/10.2353/ajpath.2010.100279.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kelliher C, Chakravarti S, Vij N, Mazur S, Stahl PJ, Engler C, et al. A cellular model for the investigation of Fuchs’ endothelial corneal dystrophy. Exp Eye Res. 2011;93(6):880–8.  https://doi.org/10.1016/j.exer.2011.10.001.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    •• Sarnicola C, Farooq AV, Colby K. Fuchs endothelial corneal dystrophy: update on pathogenesis and future directions. Eye Contact Lens. 2018.  https://doi.org/10.1097/ICL.0000000000000469 Recent review of various cellular processes involved in FECD. First paper to suggest a unified theory of FECD.
  16. 16.
    Wilson SE, Bourne WM. Fuchs’ dystrophy. Cornea. 1988;7(1):2–18.CrossRefPubMedGoogle Scholar
  17. 17.
    Syed ZA, Tran JA, Jurkunas UV. Peripheral endothelial cell count is a predictor of disease severity in advanced Fuchs endothelial corneal dystrophy. Cornea. 2017;36(10):1166–71.  https://doi.org/10.1097/ICO.0000000000001292.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Matthaei M, Sandhaeger H, Hermel M, Adler W, Jun AS, Cursiefen C, et al. Changing indications in penetrating keratoplasty: a systematic review of 34 years of global reporting. Transplantation. 2017;101(6):1387–99.  https://doi.org/10.1097/TP.0000000000001281.CrossRefPubMedGoogle Scholar
  19. 19.
    Joyce NC, Harris DL, Mello DM. Mechanisms of mitotic inhibition in corneal endothelium: contact inhibition and TGF-beta2. Invest Ophthalmol Vis Sci. 2002;43(7):2152–9.PubMedGoogle Scholar
  20. 20.
    Kikuchi M, Zhu C, Senoo T, Obara Y, Joyce NC. p27kip1 siRNA induces proliferation in corneal endothelial cells from young but not older donors. Invest Ophthalmol Vis Sci. 2006;47(11):4803–9.  https://doi.org/10.1167/iovs.06-0521.CrossRefPubMedGoogle Scholar
  21. 21.
    Joyce NC. Proliferative capacity of corneal endothelial cells. Exp Eye Res. 2012;95(1):16–23.  https://doi.org/10.1016/j.exer.2011.08.014.CrossRefPubMedGoogle Scholar
  22. 22.
    Kim TY, Kim WI, Smith RE, Kay ED. Role of p27(Kip1) in cAMP- and TGF-beta2-mediated antiproliferation in rabbit corneal endothelial cells. Invest Ophthalmol Vis Sci. 2001;42(13):3142–9.PubMedGoogle Scholar
  23. 23.
    Joyce NC, Harris DL. Decreasing expression of the G1-phase inhibitors, p21Cip1 and p16INK4a, promotes division of corneal endothelial cells from older donors. Mol Vis. 2010;16:897–906.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Wilson SE, Weng J, Blair S, He YG, Lloyd S. Expression of E6/E7 or SV40 large T antigen-coding oncogenes in human corneal endothelial cells indicates regulated high-proliferative capacity. Invest Ophthalmol Vis Sci. 1995;36(1):32–40.PubMedGoogle Scholar
  25. 25.
    Treffers WF. Human corneal endothelial wound repair. In vitro and in vivo. Ophthalmology. 1982;89(6):605–13.CrossRefPubMedGoogle Scholar
  26. 26.
    Whikehart DR, Parikh CH, Vaughn AV, Mishler K, Edelhauser HF. Evidence suggesting the existence of stem cells for the human corneal endothelium. Mol Vis. 2005;11:816–24.PubMedGoogle Scholar
  27. 27.
    He Z, Campolmi N, Gain P, Ha Thi BM, Dumollard JM, Duband S, et al. Revisited microanatomy of the corneal endothelial periphery: new evidence for continuous centripetal migration of endothelial cells in humans. Stem Cells. 2012;30(11):2523–34.  https://doi.org/10.1002/stem.1212.CrossRefPubMedGoogle Scholar
  28. 28.
    Melles GR, Lander F, Beekhuis WH, Remeijer L, Binder PS. Posterior lamellar keratoplasty for a case of pseudophakic bullous keratopathy. Am J Ophthalmol. 1999;127(3):340–1.CrossRefPubMedGoogle Scholar
  29. 29.
    Melles GR. Posterior lamellar keratoplasty: DLEK to DSEK to DMEK. Cornea. 2006;25(8):879–81.  https://doi.org/10.1097/01.ico.0000243962.60392.4f.CrossRefPubMedGoogle Scholar
  30. 30.
    Jain S, Azar DT. New lamellar keratoplasty techniques: posterior keratoplasty and deep lamellar keratoplasty. Curr Opin Ophthalmol. 2001;12(4):262–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Terry MA, Ousley PJ. Deep lamellar endothelial keratoplasty in the first United States patients: early clinical results. Cornea. 2001;20(3):239–43.CrossRefPubMedGoogle Scholar
  32. 32.
    Melles GR, Wijdh RH, Nieuwendaal CP. A technique to excise the descemet membrane from a recipient cornea (descemetorhexis). Cornea. 2004;23(3):286–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Gorovoy MS. Descemet-stripping automated endothelial keratoplasty. Cornea. 2006;25(8):886–9.  https://doi.org/10.1097/01.ico.0000214224.90743.01.CrossRefPubMedGoogle Scholar
  34. 34.
    Price MO, Calhoun P, Kollman C, Price FW Jr, Lass JH. Descemet stripping endothelial keratoplasty: ten-year endothelial cell loss compared with penetrating keratoplasty. Ophthalmology. 2016;123(7):1421–7.  https://doi.org/10.1016/j.ophtha.2016.03.011.CrossRefPubMedGoogle Scholar
  35. 35.
    Price MO, Gorovoy M, Benetz BA, Price FW Jr, Menegay HJ, Debanne SM, et al. Descemet’s stripping automated endothelial keratoplasty outcomes compared with penetrating keratoplasty from the Cornea Donor Study. Ophthalmology. 2010;117(3):438–44.  https://doi.org/10.1016/j.ophtha.2009.07.036.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Melles GR, Ong TS, Ververs B, van der Wees J. Descemet membrane endothelial keratoplasty (DMEK). Cornea. 2006;25(8):987–90.  https://doi.org/10.1097/01.ico.0000248385.16896.34.CrossRefPubMedGoogle Scholar
  37. 37.
    Zhu L, Zha Y, Cai J, Zhang Y. Descemet stripping automated endothelial keratoplasty versus descemet membrane endothelial keratoplasty: a meta-analysis. Int Ophthalmol. 2018;38(2):897–905.  https://doi.org/10.1007/s10792-017-0533-3.CrossRefPubMedGoogle Scholar
  38. 38.
    Stuart AJ, Romano V, Virgili G, Shortt AJ. Descemet’s membrane endothelial keratoplasty (DMEK) versus Descemet’s stripping automated endothelial keratoplasty (DSAEK) for corneal endothelial failure. Cochrane Database Syst Rev. 2018;6:CD012097.  https://doi.org/10.1002/14651858.CD012097.pub2.CrossRefPubMedGoogle Scholar
  39. 39.
    • Deng SX, Lee WB, Hammersmith KM, Kuo AN, Li JY, Shen JF, et al. Descemet membrane endothelial keratoplasty: safety and outcomes: a report by the American Academy of Ophthalmology. Ophthalmology. 2018;125(2):295–310.  https://doi.org/10.1016/j.ophtha.2017.08.015 Recent technology assessment evaluating published series on DMEK to determine outcomes and complications. CrossRefPubMedGoogle Scholar
  40. 40.
    Jacobi C, Zhivov A, Korbmacher J, Falke K, Guthoff R, Schlotzer-Schrehardt U, et al. Evidence of endothelial cell migration after descemet membrane endothelial keratoplasty. Am J Ophthalmol. 2011;152(4):537–42 e2.  https://doi.org/10.1016/j.ajo.2011.04.005.CrossRefPubMedGoogle Scholar
  41. 41.
    Tourtas T, Weller JM, Bachmann BO, Kruse FE. Larger descemetorhexis to improve graft adhesion in Descemet membrane endothelial keratoplasty does not cause postoperative peripheral corneal edema. Eye Contact Lens. 2015;41(6):344–8.  https://doi.org/10.1097/ICL.0000000000000125.CrossRefPubMedGoogle Scholar
  42. 42.
    Birbal RS, Hsien S, Zygoura V, Parker JS, Ham L, van Dijk K, et al. Outcomes of hemi-Descemet membrane endothelial keratoplasty for Fuchs endothelial corneal dystrophy. Cornea. 2018;37(7):854–8.  https://doi.org/10.1097/ICO.0000000000001578.CrossRefPubMedGoogle Scholar
  43. 43.
    Dirisamer M, Ham L, Dapena I, van Dijk K, Melles GR. Descemet membrane endothelial transfer: “free-floating” donor Descemet implantation as a potential alternative to “keratoplasty”. Cornea. 2012;31(2):194–7.  https://doi.org/10.1097/ICO.0b013e31821c9afc.CrossRefPubMedGoogle Scholar
  44. 44.
    Watson SL, Abiad G, Coroneo MT. Spontaneous resolution of corneal oedema following Descemet’s detachment. Clin Exp Ophthalmol. 2006;34(8):797–9.  https://doi.org/10.1111/j.1442-9071.2006.01319.x.CrossRefPubMedGoogle Scholar
  45. 45.
    Ziaei M, Barsam A, Mearza AA. Spontaneous corneal clearance despite graft removal in Descemet stripping endothelial keratoplasty in Fuchs endothelial dystrophy. Cornea. 2013;32(7):e164–6.  https://doi.org/10.1097/ICO.0b013e31828b75a1.CrossRefPubMedGoogle Scholar
  46. 46.
    Iovieno A, Neri A, Soldani AM, Adani C, Fontana L. Descemetorhexis without graft placement for the treatment of Fuchs endothelial dystrophy: preliminary results and review of the literature. Cornea. 2017;36(6):637–41.  https://doi.org/10.1097/ICO.0000000000001202.CrossRefPubMedGoogle Scholar
  47. 47.
    Moloney G, Chan UT, Hamilton A, Zahidin AM, Grigg JR, Devasahayam RN. Descemetorhexis for Fuchs’ dystrophy. Can J Ophthalmol. 2015;50(1):68–72.  https://doi.org/10.1016/j.jcjo.2014.10.014.CrossRefPubMedGoogle Scholar
  48. 48.
    Shah RD, Randleman JB, Grossniklaus HE. Spontaneous corneal clearing after Descemet’s stripping without endothelial replacement. Ophthalmology. 2012;119(2):256–60.  https://doi.org/10.1016/j.ophtha.2011.07.032.CrossRefPubMedGoogle Scholar
  49. 49.
    Bleyen I, Saelens IE, van Dooren BT, van Rij G. Spontaneous corneal clearing after Descemet’s stripping. Ophthalmology. 2013;120(1):215.  https://doi.org/10.1016/j.ophtha.2012.08.037.CrossRefPubMedGoogle Scholar
  50. 50.
    •• Borkar DS, Veldman P, Colby KA. Treatment of Fuchs endothelial dystrophy by Descemet stripping without endothelial keratoplasty. Cornea. 2016;35(10):1267–73.  https://doi.org/10.1097/ICO.0000000000000915 First case series to demonstrate success of Descemet stripping only. CrossRefPubMedGoogle Scholar
  51. 51.
    •• Davies E, Jurkunas U, Pineda R 2nd. Predictive factors for corneal clearance after descemetorhexis without endothelial keratoplasty. Cornea. 2018;37(2):137–40.  https://doi.org/10.1097/ICO.0000000000001427 Recent series suggesting that a peeling technique (rather than a stripping technique) for descemetorhexis improves success rate. CrossRefPubMedGoogle Scholar
  52. 52.
    Rao R, Borkar DS, Colby KA, Veldman PB. Descemet membrane endothelial keratoplasty after failed Descemet stripping without endothelial keratoplasty. Cornea. 2017;36(7):763–6.  https://doi.org/10.1097/ICO.0000000000001214.CrossRefPubMedGoogle Scholar
  53. 53.
    Koenig SB. Long-term corneal clarity after spontaneous repair of an iatrogenic descemetorhexis in a patient with Fuchs dystrophy. Cornea. 2013;32(6):886–8.  https://doi.org/10.1097/ICO.0b013e3182886aaa.CrossRefPubMedGoogle Scholar
  54. 54.
    •• Moloney G, Petsoglou C, Ball M, Kerdraon Y, Hollhumer R, Spiteri N, et al. Descemetorhexis without grafting for Fuchs endothelial dystrophy-supplementation with topical ripasudil. Cornea. 2017;36(6):642–8.  https://doi.org/10.1097/ICO.0000000000001209 First case series to suggest Rho kinase inhibitors may be useful after Descemet stripping. CrossRefPubMedGoogle Scholar
  55. 55.
    Kymionis GD, Liakopoulos DA, Grentzelos MA, Naoumidi I, Kontadakis GA, Tsoulnaras KI, et al. Mini descemet membrane stripping (m-DMES) in patients with Fuchs’ endothelial dystrophy: a new method. Saudi J Ophthalmol. 2017;31(4):275–9.  https://doi.org/10.1016/j.sjopt.2017.05.010.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Malyugin BE, Izmaylova SB, Malyutina EA, Antonova OP, Gelyastanov AM. Clinical and functional results of one-step phaco surgery and central descemetorhexis for cataract and Fuchs primary endothelial corneal dystrophy. Vestn oftalmol. 2017;133(6):16–22.  https://doi.org/10.17116/oftalma2017133616-22.CrossRefPubMedGoogle Scholar
  57. 57.
    •• Huang MJ, Kane S, Dhaliwal DK. Descemetorhexis without endothelial keratoplasty versus DMEK for treatment of Fuchs endothelial corneal dystrophy. Cornea. 2018.  https://doi.org/10.1097/ICO.0000000000001742 Recent series comparing DMEK and Descemet stripping, showing that approximately equal final visual acuities are obtained with both. Although Descemet stripping took slightly longer to obtain corneal clearance, it had fewer complications than DMEK.
  58. 58.
    Ham L, Dapena I, Moutsouris K, Melles GR. Persistent corneal edema after descemetorhexis without corneal graft implantation in a case of Fuchs endothelial dystrophy. Cornea. 2011;30(2):248–9.  https://doi.org/10.1097/ICO.0b013e3181eeb2c7.CrossRefPubMedGoogle Scholar
  59. 59.
    Arbelaez JG, Price MO, Price FW Jr. Long-term follow-up and complications of stripping Descemet membrane without placement of graft in eyes with Fuchs endothelial dystrophy. Cornea. 2014;33(12):1295–9.  https://doi.org/10.1097/ICO.0000000000000270.CrossRefPubMedGoogle Scholar
  60. 60.
    Koenig SB. Planned descemetorhexis without endothelial keratoplasty in eyes with Fuchs corneal endothelial dystrophy. Cornea. 2015;34(9):1149–51.  https://doi.org/10.1097/ICO.0000000000000531.CrossRefPubMedGoogle Scholar
  61. 61.
    Galvis V, Tello A, Berrospi RD, Cuadros MO, Blanco NA. Descemetorhexis without endothelial graft in Fuchs dystrophy. Cornea. 2016;35(9):e26–8.  https://doi.org/10.1097/ICO.0000000000000931.CrossRefPubMedGoogle Scholar
  62. 62.
    Garnock-Jones KP. Ripasudil: first global approval. Drugs. 2014;74(18):2211–5.  https://doi.org/10.1007/s40265-014-0333-2.CrossRefPubMedGoogle Scholar
  63. 63.
    Okumura N, Koizumi N, Ueno M, Sakamoto Y, Takahashi H, Hirata K, et al. Enhancement of corneal endothelium wound healing by Rho-associated kinase (ROCK) inhibitor eye drops. Br J Ophthalmol. 2011;95(7):1006–9.  https://doi.org/10.1136/bjo.2010.194571.CrossRefPubMedGoogle Scholar
  64. 64.
    Okumura N, Nakano S, Kay EP, Numata R, Ota A, Sowa Y, et al. Involvement of cyclin D and p27 in cell proliferation mediated by ROCK inhibitors Y-27632 and Y-39983 during corneal endothelium wound healing. Invest Ophthalmol Vis Sci. 2014;55(1):318–29.  https://doi.org/10.1167/iovs.13-12225.CrossRefPubMedGoogle Scholar
  65. 65.
    Peh GS, Adnan K, George BL, Ang HP, Seah XY, Tan DT, et al. The effects of Rho-associated kinase inhibitor Y-27632 on primary human corneal endothelial cells propagated using a dual media approach. Sci Rep. 2015;5:9167.  https://doi.org/10.1038/srep09167.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Okumura N, Ueno M, Koizumi N, Sakamoto Y, Hirata K, Hamuro J, et al. Enhancement on primate corneal endothelial cell survival in vitro by a ROCK inhibitor. Invest Ophthalmol Vis Sci. 2009;50(8):3680–7.  https://doi.org/10.1167/iovs.08-2634.CrossRefPubMedGoogle Scholar
  67. 67.
    •• Kinoshita S, Koizumi N, Ueno M, Okumura N, Imai K, Tanaka H, et al. Injection of cultured cells with a ROCK inhibitor for bullous keratopathy. N Engl J Med. 2018;378(11):995–1003.  https://doi.org/10.1056/NEJMoa1712770 Landmark study demonstrating corneal clearance after injection of cultured corneal endothelial cells. CrossRefPubMedGoogle Scholar
  68. 68.
    Petroll WM, Robertson DM. In vivo confocal microscopy of the cornea: new developments in image acquisition, reconstruction, and analysis using the HRT-Rostock corneal module. Ocul Surf. 2015;13(3):187–203.  https://doi.org/10.1016/j.jtos.2015.05.002.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Kansas City University of Medicine and BiosciencesKansas CityUSA
  2. 2.Department of Ophthalmology and Visual ScienceUniversity of ChicagoChicagoUSA

Personalised recommendations