Advertisement

Current Ophthalmology Reports

, Volume 7, Issue 1, pp 21–29 | Cite as

Adult Stem Cells, Tools for Repairing the Retina

  • Afnan M. Aladdad
  • Karl E. KadorEmail author
Regenerative Medicine in Ophthalmology (D Myung, Section Editor)
  • 43 Downloads
Part of the following topical collections:
  1. Topical Collection on Regenerative Medicine in Ophthalmology

Abstract

Purpose of Review

Retinal degenerative diseases lead to the death of retinal neurons causing visual impairment and blindness. In lower order vertebrates, the retina and its surrounding tissue contain stem-cell niches capable of regenerating damaged tissue. Here, we examine these niches and review their capacity to be used as retinal stem/progenitor cells (RSCs/RPCs) for retinal repair.

Recent Findings

Exogenous factors can control the in vitro activation of RSCs/PCs found in several niches within the adult eye including cells in the ciliary margin, the retinal pigment epithelium, iris pigment epithelium, as well as the inducement of Müller and amacrine cells within the neural retina itself. Recently, factors have been identified for the activation of adult mammalian Müller cells to a RPC state in vivo.

Summary

Whereas cell transplantation still holds potential for retinal repair, activation of the dormant native regeneration process may lead to a more successful process including greater integration efficiency and proper synaptic targeting.

Keywords

Retinal stem cells niche Retinal regeneration Retinal adult stem cells 

Notes

Funding Information

The authors were supported by a grant from the NIH (R01-EY028956 to KEK) and startup funds from the University of Missouri-Kansas City School of Medicine and Vision Research Center (KEK).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Wong WL, Su X, Li X, Cheung CMG, Klein R, Cheng C-Y, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2(2):e106–e16.CrossRefPubMedGoogle Scholar
  2. 2.
    Hamel C. Retinitis pigmentosa. Orphanet J Rare Dis. 2006;1(1):40.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hageman GS, Gehrs K, Johnson LV, Anderson D. Age-related macular degeneration (AMD). 2008.Google Scholar
  4. 4.
    Gupta N, Yücel YH. Glaucoma as a neurodegenerative disease. Curr Opin Ophthalmol. 2007;18(2):110–4.CrossRefPubMedGoogle Scholar
  5. 5.
    Wetts R, Serbedzija GN, Fraser SE. Cell lineage analysis reveals multipotent precursors in the ciliary margin of the frog retina. Dev Biol. 1989;136(1):254–63.CrossRefPubMedGoogle Scholar
  6. 6.
    Klassen HJ, Ng TF, Kurimoto Y, Kirov I, Shatos M, Coffey P, et al. Multipotent retinal progenitors express developmental markers, differentiate into retinal neurons, and preserve light-mediated behavior. Invest Ophthalmol Vis Sci. 2004;45(11):4167–73.CrossRefPubMedGoogle Scholar
  7. 7.
    Hitchcock P, Ochocinska M, Sieh A, Otteson D. Persistent and injury-induced neurogenesis in the vertebrate retina. Prog Retin Eye Res. 2004;23(2):183–94.CrossRefPubMedGoogle Scholar
  8. 8.
    Ahmad I, Tang L, Pham H. Identification of neural progenitors in the adult mammalian eye. Biochem Biophys Res Commun. 2000;270(2):517–21.CrossRefPubMedGoogle Scholar
  9. 9.
    Fischer AJ, Bosse JL, El-Hodiri HM. Reprint of: the ciliary marginal zone (CMZ) in development and regeneration of the vertebrate eye. Exp Eye Res. 2014;123:115–20.CrossRefPubMedGoogle Scholar
  10. 10.
    Yip HK. Retinal stem cells and regeneration of vision system. Anat Rec. 2014;297(1):137–60.CrossRefGoogle Scholar
  11. 11.
    Wohl SG, Schmeer CW, Isenmann S. Neurogenic potential of stem/progenitor-like cells in the adult mammalian eye. Prog Retin Eye Res. 2012;31(3):213–42.CrossRefPubMedGoogle Scholar
  12. 12.
    Hamon A, Roger JE, Yang XJ, Perron M. Müller glial cell-dependent regeneration of the neural retina: an overview across vertebrate model systems. Dev Dyn. 2016;245(7):727–38.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    •• Jorstad NL, Wilken MS, Grimes WN, Wohl SG, VandenBosch LS, Yoshimatsu T, et al. Stimulation of functional neuronal regeneration from Müller glia in adult mice. Nature. 2017;548(7665):103 MG treated with an over expression of Ascl1 will re-enter the cell cycle and transdifferentiate into neurons in adult mice. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Abburi C, Prabhakar S, Kalra J, Huria A, Anand A. Vascular endothelial growth factor (VEGF) induced proliferation of human fetal derived ciliary epithelium stem cells is mediated by jagged-N cadherin pathway. Curr Neurovasc Res. 2013;10(2):93–102.CrossRefPubMedGoogle Scholar
  15. 15.
    Otero JJ, Fu W, Kan L, Cuadra AE, Kessler JA. β-Catenin signaling is required for neural differentiation of embryonic stem cells. Development. 2004;131(15):3545–57.CrossRefPubMedGoogle Scholar
  16. 16.
    Coles BL, van der Kooy D. P-cadherin is necessary for retinal stem cell behavior in vitro, but not in vivo. Stem Cell Res. 2017;21:141–7.CrossRefPubMedGoogle Scholar
  17. 17.
    MacNeil A, Pearson RA, MacLaren RE, Smith AJ, Sowden JC, Ali RR. Comparative analysis of progenitor cells isolated from the iris, pars plana, and ciliary body of the adult porcine eye. Stem Cells. 2007;25(10):2430–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Jiang S-M, Zeng L-P, Zeng J-H, Tang L, Chen X-M, Wei X. β-III-tubulin: a reliable marker for retinal ganglion cell labeling in experimental models of glaucoma. Int J Ophthalmol. 2015;8(4):643.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Haruta M, Kosaka M, Kanegae Y, Saito I, Inoue T, Kageyama R, et al. Induction of photoreceptor-specific phenotypes in adult mammalian iris tissue. Nat Neurosci. 2001;4(12):1163–4.Google Scholar
  20. 20.
    Seko Y, Azuma N, Kaneda M, Nakatani K, Miyagawa Y, Noshiro Y, et al. Derivation of human differential photoreceptor-like cells from the iris by defined combinations of CRX, RX and NEUROD RX and NEUROD. PLoS One. 2012;7(4):e35611.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Fischer AJ, Reh TA. Identification of a proliferating marginal zone of retinal progenitors in postnatal chickens. Dev Biol. 2000;220(2):197–210.CrossRefPubMedGoogle Scholar
  22. 22.
    Fischer AJ, Reh TA. Exogenous growth factors stimulate the regeneration of ganglion cells in the chicken retina. Dev Biol. 2002;251(2):367–79.CrossRefPubMedGoogle Scholar
  23. 23.
    Bhatia B, Jayaram H, Singhal S, Jones MF, Limb GA. Differences between the neurogenic and proliferative abilities of Müller glia with stem cell characteristics and the ciliary epithelium from the adult human eye. Exp Eye Res. 2011;93(6):852–61.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rowan S, Cepko CL. Genetic analysis of the homeodomain transcription factor Chx10 in the retina using a novel multifunctional BAC transgenic mouse reporter. Dev Biol. 2004;271(2):388–402.CrossRefPubMedGoogle Scholar
  25. 25.
    Royall LN, Lea D, Matsushita T, Takeda T-A, Taketani S, Araki M. A novel culture method reveals unique neural stem/progenitors in mature porcine iris tissues that differentiate into neuronal and rod photoreceptor-like cells. Brain Res. 2017;1675:51–60.CrossRefPubMedGoogle Scholar
  26. 26.
    Nyfeler Y, Kirch RD, Mantei N, Leone DP, Radtke F, Suter U, et al. Jagged1 signals in the postnatal subventricular zone are required for neural stem cell self-renewal. EMBO J. 2005;24(19):3504–15.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Carmon KS, Lin Q, Gong X, Thomas A, Liu Q. LGR5 interacts and co-internalizes with Wnt receptors to modulate Wnt/β-catenin signaling. Mol Cell Biol. 2012:MCB. 00272–12.Google Scholar
  28. 28.
    Schuijers J, Clevers H. Adult mammalian stem cells: the role of Wnt, Lgr5 and R-spondins. EMBO J. 2012;31(12):2685–96.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sukhdeo K, Koch CE, Miller TE, Zhou H, Rivera M, Yan K, et al. The Lgr5 transgene is expressed specifically in glycinergic amacrine cells in the mouse retina. Exp Eye Res. 2014;119:106–10.CrossRefPubMedGoogle Scholar
  30. 30.
    Yao K, Qiu S, Tian L, Snider WD, Flannery JG, Schaffer DV, et al. Wnt regulates proliferation and neurogenic potential of Müller glial cells via a Lin28/let-7 miRNA-dependent pathway in adult mammalian retinas. Cell Rep. 2016;17(1):165–78.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Coles BL, Horsford DJ, McInnes RR, van der Kooy D. Loss of retinal progenitor cells leads to an increase in the retinal stem cell population in vivo. Eur J Neurosci. 2006;23(1):75–82.CrossRefPubMedGoogle Scholar
  32. 32.
    Capowski EE, Simonett JM, Clark EM, Wright LS, Howden SE, Wallace KA, et al. Loss of MITF expression during human embryonic stem cell differentiation disrupts retinal pigment epithelium development and optic vesicle cell proliferation. Hum Mol Genet. 2014;23(23):6332–44.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Demontis GC, Aruta C, Comitato A, De Marzo A, Marigo V. Functional and molecular characterization of rod-like cells from retinal stem cells derived from the adult ciliary epithelium. PLoS One. 2012;7(3):e33338.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ahmed S, Gan H, Lam CS, Poonepalli A, Ramasamy S, Tay Y, et al. Transcription factors and neural stem cell self-renewal, growth and differentiation. Cell Adhes Migr. 2009;3(4):412–24.CrossRefGoogle Scholar
  35. 35.
    Asami M, Sun G, Yamaguchi M, Kosaka M. Multipotent cells from mammalian iris pigment epithelium. Dev Biol. 2007;304(1):433–46.CrossRefPubMedGoogle Scholar
  36. 36.
    Lord-Grignon J, Abdouh M, Bernier G. Identification of genes expressed in retinal progenitor/stem cell colonies isolated from the ocular ciliary body of adult mice. Gene Expr Patterns. 2006;6(8):992–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Bernardos RL, Barthel LK, Meyers JR, Raymond PA. Late-stage neuronal progenitors in the retina are radial Müller glia that function as retinal stem cells. J Neurosci. 2007;27(26):7028–40.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sherpa T, Fimbel SM, Mallory DE, Maaswinkel H, Spritzer SD, Sand JA, et al. Ganglion cell regeneration following whole-retina destruction in zebrafish. Dev Neurobiol. 2008;68(2):166–81.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ramachandran R, Reifler A, Parent JM, Goldman D. Conditional gene expression and lineage tracing of tuba1a expressing cells during zebrafish development and retina regeneration. J Comp Neurol. 2010;518(20):4196–212.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Nadal-Nicolás FM, Jiménez-López M, Sobrado-Calvo P, Nieto-López L, Cánovas-Martínez I, Salinas-Navarro M, et al. Brn3a as a marker of retinal ganglion cells: qualitative and quantitative time course studies in naive and optic nerve–injured retinas. Invest Ophthalmol Vis Sci. 2009;50(8):3860–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Nickerson PE, Emsley JG, Myers T, Clarke DB. Proliferation and expression of progenitor and mature retinal phenotypes in the adult mammalian ciliary body after retinal ganglion cell injury. Invest Ophthalmol Vis Sci. 2007;48(11):5266–75.CrossRefPubMedGoogle Scholar
  42. 42.
    Martinez-De Luna RI, Kelly LE, El-Hodiri HM. The retinal homeobox (Rx) gene is necessary for retinal regeneration. Dev Biol. 2011;353(1):10–8.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lust K, Wittbrodt J. Activating the regenerative potential of Müller glia cells in a regeneration-deficient retina. elife. 2018;7:e32319.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    • Gorsuch RA, Lahne M, Yarka CE, Petravick ME, Li J, Hyde DR. Sox2 regulates Müller glia reprogramming and proliferation in the regenerating zebrafish retina via Lin28 and Ascl1a. Exp Eye Res. 2017;161:174–92 MG proliferation and differentiation into a retinal neural progenitor lineage is controlled by Sox2 in zebrafish. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Reh TA, Levine E. Multipotential stem cells and progenitors in the vertebrate retina. J Neurobiol. 1998;36(2):206–20.CrossRefPubMedGoogle Scholar
  47. 47.
    Otteson DC, Hitchcock PF. Stem cells in the teleost retina: persistent neurogenesis and injury-induced regeneration. Vis Res. 2003;43(8):927–36.CrossRefPubMedGoogle Scholar
  48. 48.
    Prada C, Puga J, Pérez-Méndez L, López R, Ramírez G. Spatial and temporal patterns of neurogenesis in the chick retina. Eur J Neurosci. 1991;3(6):559–69.CrossRefPubMedGoogle Scholar
  49. 49.
    Moshiri A, Close J, Reh TA. Retinal stem cells and regeneration. Int J Dev Biol. 2004;48(8–9):1003–14.CrossRefPubMedGoogle Scholar
  50. 50.
    Kubota R, Hokoc J, Moshiri A, McGuire C, Reh T. A comparative study of neurogenesis in the retinal ciliary marginal zone of homeothermic vertebrates. Dev Brain Res. 2002;134(1–2):31–41.CrossRefGoogle Scholar
  51. 51.
    Tropepe V, Coles BL, Chiasson BJ, Horsford DJ, Elia AJ, McInnes RR, et al. Retinal stem cells in the adult mammalian eye. Science. 2000;287(5460):2032–6.CrossRefPubMedGoogle Scholar
  52. 52.
    Coles BL, van der Kooy D. Isolation of retinal stem cells from the mouse eye. J Visualized Exp: JoVE. 2010;43.Google Scholar
  53. 53.
    Moshiri A, Reh TA. Persistent progenitors at the retinal margin of ptc+/−mice. J Neurosci. 2004;24(1):229–37.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Bharti K, Nguyen MTT, Skuntz S, Bertuzzi S, Arnheiter H. The other pigment cell: specification and development of the pigmented epithelium of the vertebrate eye. Pigment Cell Res. 2006;19(5):380–94.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    • Del Debbio CB, Peng X, Xiong H, Ahmad I. Adult ciliary epithelial stem cells generate functional neurons and differentiate into both early and late born retinal neurons under non-cell autonomous influences. BMC Neurosci. 2013;14(1):130 Cells harvested from the CMZ can differentiate into rod photoreceptors and RGCs. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Guduric-Fuchs J, Chen W, Price H, Archer DB, Cogliati T. RPE and neuronal differentiation of allotransplantated porcine ciliary epithelium-derived cells. Mol Vis. 2011;17:2580.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Coles BL, Angénieux B, Inoue T, Del Rio-Tsonis K, Spence JR, McInnes RR, et al. Facile isolation and the characterization of human retinal stem cells. Proc Natl Acad Sci. 2004;101(44):15772–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Ballios BG, Clarke L, Coles BL, Shoichet MS, Van Der Kooy D. The adult retinal stem cell is a rare cell in the ciliary epithelium whose progeny can differentiate into photoreceptors. Biology open. 2012;1(3):237–46.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Bradford RL, Wang C, Zack DJ, Adler R. Roles of cell-intrinsic and microenvironmental factors in photoreceptor cell differentiation. Dev Biol. 2005;286(1):31–45.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Gualdoni S, Baron M, Lakowski J, Decembrini S, Smith AJ, Pearson RA, et al. Adult ciliary epithelial cells, previously identified as retinal stem cells with potential for retinal repair, fail to differentiate into new rod photoreceptors. Stem Cells. 2010;28(6):1048–59.CrossRefPubMedGoogle Scholar
  61. 61.
    Cicero SA, Johnson D, Reyntjens S, Frase S, Connell S, Chow LM, et al. Cells previously identified as retinal stem cells are pigmented ciliary epithelial cells. Proc Natl Acad Sci. 2009;106(16):6685–90.CrossRefPubMedGoogle Scholar
  62. 62.
    Frøen R, Johnsen EO, Nicolaissen B, Facskó A, Petrovski G, Moe MC. Does the adult human ciliary body epithelium contain “true” retinal stem cells? Biomed Res Int. 2013;2013:1–7.CrossRefGoogle Scholar
  63. 63.
    Li X. Inherited retinal dystrophy into the RCS rat: prevention of photoreceptor degeneration by pigment epithelial cell transplantation. Exp Eye Res. 1988;47:911–47.CrossRefPubMedGoogle Scholar
  64. 64.
    Gouras P, Kong J, Tsang SH. Retinal degeneration and RPE transplantation in Rpe65−/− mice. Invest Ophthalmol Vis Sci. 2002;43(10):3307–11.PubMedGoogle Scholar
  65. 65.
    Ramón Martínez-Morales J, Rodrigo I, Bovolenta P. Eye development: a view from the retina pigmented epithelium. BioEssays. 2004;26(7):766–77.CrossRefGoogle Scholar
  66. 66.
    Okada T. Cellular metaplasia or transdifferentiation as a model for retinal cell differentiation. Curr Top Dev Biol. 16(34):380.Google Scholar
  67. 67.
    Fischer AJ, Reh TA. Transdifferentiation of pigmented epithelial cells: a source of retinal stem cells? Dev Neurosci. 2001;23(4–5):268–76.CrossRefPubMedGoogle Scholar
  68. 68.
    Reh T, Nagy T, Gretton H. Retinal pigmented epithelial cells induced to transdifferentiate to neurons by laminin. Nature. 1987;330(6143):68–71.CrossRefPubMedGoogle Scholar
  69. 69.
    Sakaguchi D, Van Hoffelen S, Young M. Differentiation and morphological integration of neural progenitor cells transplanted into the developing mammalian eye. Ann N Y Acad Sci. 2003;995(1):127–39.CrossRefPubMedGoogle Scholar
  70. 70.
    Luo M, Chen Y. Application of stem cell-derived retinal pigmented epithelium in retinal degenerative diseases: present and future. Int J Ophthalmol. 2018;11(1):150–9.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Ikegami Y, Mitsuda S, Araki M. Neural cell differentiation from retinal pigment epithelial cells of the newt: an organ culture model for the urodele retinal regeneration. J Neurobiol. 2002;50(3):209–20.CrossRefPubMedGoogle Scholar
  72. 72.
    Susaki K, Chiba C. MEK mediates in vitro neural transdifferentiation of the adult newt retinal pigment epithelium cells: is FGF2 an induction factor? Pigment Cell Res. 2007;20(5):364–79.CrossRefPubMedGoogle Scholar
  73. 73.
    Yoshii C, Ueda Y, Okamoto M, Araki M. Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina. Dev Biol. 2007;303(1):45–56.CrossRefPubMedGoogle Scholar
  74. 74.
    Blenkinsop TA, Saini JS, Maminishkis A, Bharti K, Wan Q, Banzon T, et al. Human adult retinal pigment epithelial stem cell–derived RPE monolayers exhibit key physiological characteristics of native tissue. Invest Ophthalmol Vis Sci. 2015;56(12):7085–99.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    • Salero E, Blenkinsop TA, Corneo B, Harris A, Rabin D, Stern JH, et al. Adult human RPE can be activated into a multipotent stem cell that produces mesenchymal derivatives. Cell Stem Cell. 2012;10(1):88–95 RPE can be de-differentiated to produce pluripotent stem cells which can be differentiated into multiple cell types including retinal neurons. CrossRefPubMedGoogle Scholar
  76. 76.
    Amemiya K, Haruta M, Takahashi M, Kosaka M, Eguchi G. Adult human retinal pigment epithelial cells capable of differentiating into neurons. Biochem Biophys Res Commun. 2004;316(1):1–5.CrossRefPubMedGoogle Scholar
  77. 77.
    Chen S, Samuel W, Fariss RN, Duncan T, Kutty RK, Wiggert B. Differentiation of human retinal pigment epithelial cells into neuronal phenotype by N-(4-hydroxyphenyl) retinamide. J Neurochem. 2003;84(5):972–81.CrossRefPubMedGoogle Scholar
  78. 78.
    Engelhardt M, Bogdahn U, Aigner L. Adult retinal pigment epithelium cells express neural progenitor properties and the neuronal precursor protein doublecortin. Brain Res. 2005;1040(1–2):98–111.CrossRefPubMedGoogle Scholar
  79. 79.
    Chichagova V, Hallam D, Collin J, Zerti D, Dorgau B, Felemban M, et al. Cellular regeneration strategies for macular degeneration: past, present and future. Eye. 2018;1.Google Scholar
  80. 80.
    Al-Hussaini H, Kam JH, Vugler A, Semo M, Jeffery G. Mature retinal pigment epithelium cells are retained in the cell cycle and proliferate in vivo. Mol Vis. 2008;14:1784.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Lin B, McLelland BT, Mathur A, Aramant RB, Seiler MJ. Sheets of human retinal progenitor transplants improve vision in rats with severe retinal degeneration. Exp Eye Res. 2018;174:13–28.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Radtke ND, Aramant RB, Petry HM, Green PT, Pidwell DJ, Seiler MJ. Vision improvement in retinal degeneration patients by implantation of retina together with retinal pigment epithelium. Am J Ophthalmol. 2008;146(2):172–82. e1.CrossRefPubMedGoogle Scholar
  83. 83.
    Stanzel BV, Liu Z, Somboonthanakij S, Wongsawad W, Brinken R, Eter N, et al. Human RPE stem cells grown into polarized RPE monolayers on a polyester matrix are maintained after grafting into rabbit subretinal space. Stem Cell Rep. 2014;2(1):64–77.CrossRefGoogle Scholar
  84. 84.
    Davis RJ, Blenkinsop TA, Campbell M, Borden SM, Charniga CJ, Lederman PL, et al. Human RPE stem cell-derived RPE preserves photoreceptors in the Royal College of Surgeons rat: method for quantifying the area of photoreceptor sparing. J Ocul Pharmacol Ther. 2016;32(5):304–9.CrossRefPubMedGoogle Scholar
  85. 85.
    Davis RJ, Alam NM, Zhao C, Müller C, Saini JS, Blenkinsop TA, et al. The developmental stage of adult human stem cell-derived retinal pigment epithelium cells influences transplant efficacy for vision rescue. Stem cell Rep. 2017;9(1):42–9.CrossRefGoogle Scholar
  86. 86.
    EGUCHI G, SHINGAI R. Cellular analysis on localization of lens forming potency in the newt iris epithelium. Develop Growth Differ. 1971;13(4):337–50.CrossRefGoogle Scholar
  87. 87.
    Tsonis PA, Jang W, Del Rio-Tsonis K, Eguchi G. A unique aged human retinal pigmented epithelial cell line useful for studying lens differentiation in vitro. Int J Dev Biol. 2004;45(5–6):753–8.Google Scholar
  88. 88.
    Kosaka M, Sun G, Haruta M, Takahashi M. Multipotentiality of iris pigment epithelial cells in vertebrate eye. Adult Stem Cells: Springer; 2004. p. 253–68.Google Scholar
  89. 89.
    Sun G, Asami M, Ohta H, Kosaka J, Kosaka M. Retinal stem/progenitor properties of iris pigment epithelial cells. Dev Biol. 2006;289(1):243–52.CrossRefPubMedGoogle Scholar
  90. 90.
    Arnhold S, Semkova I, Andressen C, Lenartz D, Meissner G, Sturm V, et al. Iris pigment epithelial cells: a possible cell source for the future treatment of neurodegenerative diseases. Exp Neurol. 2004;187(2):410–7.CrossRefPubMedGoogle Scholar
  91. 91.
    Frøen RC, Johnsen EO, Petrovski G, Berényi E, Facsko A, Berta A, et al. Pigment epithelial cells isolated from human peripheral iridectomies have limited properties of retinal stem cells. Acta Ophthalmol. 2011;89(8):e635–e44.CrossRefPubMedGoogle Scholar
  92. 92.
    Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, et al. Müller cells in the healthy and diseased retina. Prog Retin Eye Res. 2006;25(4):397–424.CrossRefPubMedGoogle Scholar
  93. 93.
    Reichenbach A, Wurm A, Pannicke T, Iandiev I, Wiedemann P, Bringmann A. Müller cells as players in retinal degeneration and edema. Graefes Arch Clin Exp Ophthalmol. 2007;245(5):627–36.CrossRefPubMedGoogle Scholar
  94. 94.
    Fischer AJ, Reh TA. Potential of Müller glia to become neurogenic retinal progenitor cells. Glia. 2003;43(1):70–6.CrossRefPubMedGoogle Scholar
  95. 95.
    Fimbel SM, Montgomery JE, Burket CT, Hyde DR. Regeneration of inner retinal neurons after intravitreal injection of ouabain in zebrafish. J Neurosci. 2007;27(7):1712–24.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Fraser B, DuVal MG, Wang H, Allison WT. Regeneration of cone photoreceptors when cell ablation is primarily restricted to a particular cone subtype. PLoS One. 2013;8(1):e55410.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Lenkowski JR, Raymond PA. Müller glia: stem cells for generation and regeneration of retinal neurons in teleost fish. Prog Retin Eye Res. 2014;40:94–123.CrossRefPubMedGoogle Scholar
  98. 98.
    Fischer AJ, Reh TA. Müller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat Neurosci. 2001;4(3):247–52.CrossRefPubMedGoogle Scholar
  99. 99.
    Webster MK, Cooley-Themm CA, Barnett JD, Bach HB, Vainner JM, Webster SE, et al. Evidence of BrdU-positive retinal neurons after application of an Alpha7 nicotinic acetylcholine receptor agonist. Neuroscience. 2017;346:437–46.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Karl MO, Hayes S, Nelson BR, Tan K, Buckingham B, Reh TA. Stimulation of neural regeneration in the mouse retina. Proceedings of the National Academy of Sciences. 2008:pnas. 0807453105.Google Scholar
  101. 101.
    Xue L, Lu J, Cao Q, Hu S, Ding P, Ling E-A. Müller glial cells express nestin coupled with glial fibrillary acidic protein in experimentally induced glaucoma in the rat retina. Neuroscience. 2006;139(2):723–32.CrossRefPubMedGoogle Scholar
  102. 102.
    Roesch K, Jadhav AP, Trimarchi JM, Stadler MB, Roska B, Sun BB, et al. The transcriptome of retinal Müller glial cells. J Comp Neurol. 2008;509(2):225–38.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Giannelli SG, Demontis GC, Pertile G, Rama P, Broccoli V. Adult human Müller glia cells are a highly efficient source of rod photoreceptors. Stem Cells. 2011;29(2):344–56.CrossRefPubMedGoogle Scholar
  104. 104.
    Johnsen EO, Frøen RC, Olstad OK, Nicolaissen B, Petrovski G, Moe MC, et al. Proliferative cells isolated from the adult human peripheral retina only transiently upregulate key retinal markers upon induced differentiation. Curr Eye Res. 2018;43(3):340–9.CrossRefPubMedGoogle Scholar
  105. 105.
    Johnsen EO, Frøen RC, Albert R, Omdal BK, Sarang Z, Berta A, et al. Activation of neural progenitor cells in human eyes with proliferative vitreoretinopathy. Exp Eye Res. 2012;98:28–36.CrossRefPubMedGoogle Scholar
  106. 106.
    Jayaram H, Jones MF, Eastlake K, Cottrill PB, Becker S, Wiseman J, et al. Transplantation of photoreceptors derived from human Müller glia restore rod function in the P23H rat. Stem Cells Transl Med. 2014;3(3):323–33.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    • Chen M, Tian S, Glasgow NG, Gibson G, Yang X, Shiber CE, et al. Lgr5+ amacrine cells possess regenerative potential in the retina of adult mice. Aging Cell. 2015;14(4):635–43 Lgr5 amacrine cells may spontaneously proliferate and transdifferentiate into retinal neurons and glia. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Ophthalmology and Department of Biomedical SciencesUniversity of Missouri - Kansas City, School of MedicineKansas CityUSA

Personalised recommendations