Advertisement

Current Ophthalmology Reports

, Volume 6, Issue 4, pp 266–274 | Cite as

Regulatory T Cell Modulation of Cytokine and Cellular Networks in Corneal Graft Rejection

  • Maryam Tahvildari
  • Takenori Inomata
  • Afsaneh Amouzegar
  • Reza Dana
Cornea (P Hamrah and T Yamaguchi, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Cornea

Abstract

Purpose of Review

Corneal allografts placed in vascularized or inflamed host beds are at increased risk of graft rejection due to the preponderance of activated immune cells in the host bed. Regulatory T cells (Tregs) are master regulators of the adaptive immune response and play a key role in the induction of immune tolerance. The aim of this review is to discuss mechanisms through which Tregs mediate tolerance in corneal transplantation and the novel therapeutic approaches that target Tregs to promote transplant survival.

Recent Findings

The inflammatory environment of high-risk allografts not only promotes activation of effector T cells and their infiltration to graft site, but also impairs Treg immunomodulatory function. Recent studies have shown that expansion of Tregs and enhancing their modulatory function significantly improve graft survival.

Summary

As our understanding of the cellular and molecular pathways in corneal transplantation has deepened, novel therapeutic strategies have been developed to improve allograft survival. In this review, we discuss therapeutic approaches that focus on Tregs to promote corneal allograft survival.

Keywords

Corneal transplantation Immune tolerance Regulatory T cells Antigen-presenting cells Plasticity of regulatory T cells Alloantigen-specific graft acceptance Graft rejection 

Notes

Funding Information

This work was supported by National Institutes of Health/National Eye Institute Grant R01 EY012963.

Compliance with Ethical Standards

Conflict of Interest

Maryam Tahvildari, Takenori Inomata, Afsaneh Amouzegar, and Reza Dana declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Financial Disclosure

The authors have no financial conflicts of interest.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Huq S, Liu Y, Benichou G, Dana MR. Relevance of the direct pathway of sensitization in corneal transplantation is dictated by the graft bed microenvironment. J Immunol. 2004;173(7):4464–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Chong EM, Dana MR. Graft failure IV. Immunologic mechanisms of corneal transplant rejection. Int Ophthalmol. 2008;28(3):209–22.  https://doi.org/10.1007/s10792-007-9099-9.CrossRefPubMedGoogle Scholar
  3. 3.
    Kawai K, Uchiyama M, Hester J, Wood K, Issa F. Regulatory T cells for tolerance. Hum Immunol. 2018;79(5):294–303.  https://doi.org/10.1016/j.humimm.2017.12.013.CrossRefPubMedGoogle Scholar
  4. 4.
    Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775–87.  https://doi.org/10.1016/j.cell.2008.05.009.CrossRefPubMedGoogle Scholar
  5. 5.
    Graca L, Cobbold SP, Waldmann H. Identification of regulatory T cells in tolerated allografts. J Exp Med. 2002;195(12):1641–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Wood KJ, Sakaguchi S. Regulatory T cells in transplantation tolerance. Nat Rev Immunol. 2003;3(3):199–210.  https://doi.org/10.1038/nri1027.CrossRefPubMedGoogle Scholar
  7. 7.
    Joffre O, Santolaria T, Calise D, Al Saati T, Hudrisier D, Romagnoli P, et al. Prevention of acute and chronic allograft rejection with CD4+CD25+Foxp3+ regulatory T lymphocytes. Nat Med. 2008;14(1):88–92.  https://doi.org/10.1038/nm1688.CrossRefPubMedGoogle Scholar
  8. 8.
    Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299(5609):1057–61.  https://doi.org/10.1126/science.1079490.CrossRefPubMedGoogle Scholar
  9. 9.
    Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155(3):1151–64.PubMedGoogle Scholar
  10. 10.
    Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4(4):330–6.  https://doi.org/10.1038/ni904.CrossRefPubMedGoogle Scholar
  11. 11.
    Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010;10(7):490–500.  https://doi.org/10.1038/nri2785.CrossRefPubMedGoogle Scholar
  12. 12.
    Ferrer IR, Hester J, Bushell A, Wood KJ. Induction of transplantation tolerance through regulatory cells: from mice to men. Immunol Rev. 2014;258(1):102–16.  https://doi.org/10.1111/imr.12158.CrossRefPubMedGoogle Scholar
  13. 13.
    • Chauhan SK, Saban DR, Dohlman TH, Dana R. CCL-21 conditioned regulatory T cells induce allotolerance through enhanced homing to lymphoid tissue. J Immunol. 2014;192(2):817–23.  https://doi.org/10.4049/jimmunol.1203469 This study demonstrates that Tregs derived from allograft acceptors express higher levels of CCR7 lymph node homing molecule compared to rejectors, and that adpotive transfer of CCR7-amplfied Tregs to graft recipients promotes corneal allograft survival. CrossRefPubMedGoogle Scholar
  14. 14.
    Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol. 2007;8(12):1353–62.  https://doi.org/10.1038/ni1536.CrossRefPubMedGoogle Scholar
  15. 15.
    Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322(5899):271–5.  https://doi.org/10.1126/science.1160062.CrossRefPubMedGoogle Scholar
  16. 16.
    Campbell DJ. Control of regulatory T cell migration, function, and homeostasis. J Immunol. 2015;195(6):2507–13.  https://doi.org/10.4049/jimmunol.1500801.CrossRefPubMedGoogle Scholar
  17. 17.
    Paust S, Lu L, McCarty N, Cantor H. Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. Proc Natl Acad Sci U S A. 2004;101(28):10398–403.  https://doi.org/10.1073/pnas.0403342101.CrossRefPubMedGoogle Scholar
  18. 18.
    Schneider H, Valk E, da Rocha Dias S, Wei B, Rudd CE. CTLA-4 up-regulation of lymphocyte function-associated antigen 1 adhesion and clustering as an alternate basis for coreceptor function. Proc Natl Acad Sci U S A. 2005;102(36):12861–6.  https://doi.org/10.1073/pnas.0505802102.CrossRefPubMedGoogle Scholar
  19. 19.
    Walker LS. Treg and CTLA-4: two intertwining pathways to immune tolerance. J Autoimmun. 2013;45:49–57.  https://doi.org/10.1016/j.jaut.2013.06.006.CrossRefPubMedGoogle Scholar
  20. 20.
    Annunziato F, Cosmi L, Liotta F, Lazzeri E, Manetti R, Vanini V, et al. Phenotype, localization, and mechanism of suppression of CD4(+)CD25(+) human thymocytes. J Exp Med. 2002;196(3):379–87.CrossRefPubMedGoogle Scholar
  21. 21.
    Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J, Enk AH. Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J Exp Med. 2001;193(11):1285–94.CrossRefPubMedGoogle Scholar
  22. 22.
    Kataoka H, Takahashi S, Takase K, Yamasaki S, Yokosuka T, Koike T, et al. CD25(+)CD4(+) regulatory T cells exert in vitro suppressive activity independent of CTLA-4. Int Immunol. 2005;17(4):421–7.  https://doi.org/10.1093/intimm/dxh221.CrossRefPubMedGoogle Scholar
  23. 23.
    Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G, et al. Role of LAG-3 in regulatory T cells. Immunity. 2004;21(4):503–13.  https://doi.org/10.1016/j.immuni.2004.08.010.CrossRefGoogle Scholar
  24. 24.
    Liang B, Workman C, Lee J, Chew C, Dale BM, Colonna L, et al. Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J Immunol. 2008;180(9):5916–26.CrossRefPubMedGoogle Scholar
  25. 25.
    Wing K, Sakaguchi S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol. 2010;11(1):7–13.  https://doi.org/10.1038/ni.1818.CrossRefPubMedGoogle Scholar
  26. 26.
    Asano T, Meguri Y, Yoshioka T, Kishi Y, Iwamoto M, Nakamura M, et al. PD-1 modulates regulatory T-cell homeostasis during low-dose interleukin-2 therapy. Blood. 2017;129(15):2186–97.  https://doi.org/10.1182/blood-2016-09-741629.CrossRefPubMedGoogle Scholar
  27. 27.
    Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, Ye X, et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 2008;28(4):546–58.  https://doi.org/10.1016/j.immuni.2008.02.017.CrossRefPubMedGoogle Scholar
  28. 28.
    Fahlen L, Read S, Gorelik L, Hurst SD, Coffman RL, Flavell RA, et al. T cells that cannot respond to TGF-beta escape control by CD4(+)CD25(+) regulatory T cells. J Exp Med. 2005;201(5):737–46.  https://doi.org/10.1084/jem.20040685.CrossRefPubMedGoogle Scholar
  29. 29.
    Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature. 2007;450(7169):566–9.  https://doi.org/10.1038/nature06306.CrossRefPubMedGoogle Scholar
  30. 30.
    Rudensky AY. Regulatory T cells and Foxp3. Immunol Rev. 2011;241(1):260–8.  https://doi.org/10.1111/j.1600-065X.2011.01018.x.CrossRefPubMedGoogle Scholar
  31. 31.
    Chaudhry A, Samstein RM, Treuting P, Liang Y, Pils MC, Heinrich JM, et al. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity. 2011;34(4):566–78.  https://doi.org/10.1016/j.immuni.2011.03.018.CrossRefPubMedGoogle Scholar
  32. 32.
    Murai M, Turovskaya O, Kim G, Madan R, Karp CL, Cheroutre H, et al. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat Immunol. 2009;10(11):1178–84.  https://doi.org/10.1038/ni.1791.CrossRefPubMedGoogle Scholar
  33. 33.
    Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med. 2001;194(5):629–44.CrossRefPubMedGoogle Scholar
  34. 34.
    Li MO, Wan YY, Flavell RA. T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity. 2007;26(5):579–91.  https://doi.org/10.1016/j.immuni.2007.03.014.CrossRefPubMedGoogle Scholar
  35. 35.
    Wan YY, Flavell RA. “Yin-Yang” functions of transforming growth factor-beta and T regulatory cells in immune regulation. Immunol Rev. 2007;220:199–213.  https://doi.org/10.1111/j.1600-065X.2007.00565.x.CrossRefPubMedGoogle Scholar
  36. 36.
    Chauhan SK, Saban DR, Lee HK, Dana R. Levels of Foxp3 in regulatory T cells reflect their functional status in transplantation. J Immunol. 2009;182(1):148–53.CrossRefPubMedGoogle Scholar
  37. 37.
    Collison LW, Chaturvedi V, Henderson AL, Giacomin PR, Guy C, Bankoti J, et al. IL-35-mediated induction of a potent regulatory T cell population. Nat Immunol. 2010;11(12):1093–101.  https://doi.org/10.1038/ni.1952.CrossRefPubMedGoogle Scholar
  38. 38.
    Grossman WJ, Verbsky JW, Barchet W, Colonna M, Atkinson JP, Ley TJ. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity. 2004;21(4):589–601.  https://doi.org/10.1016/j.immuni.2004.09.002.CrossRefPubMedGoogle Scholar
  39. 39.
    Grossman WJ, Verbsky JW, Tollefsen BL, Kemper C, Atkinson JP, Ley TJ. Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood. 2004;104(9):2840–8.  https://doi.org/10.1182/blood-2004-03-0859.CrossRefPubMedGoogle Scholar
  40. 40.
    Ren X, Ye F, Jiang Z, Chu Y, Xiong S, Wang Y. Involvement of cellular death in TRAIL/DR5-dependent suppression induced by CD4(+)CD25(+) regulatory T cells. Cell Death Differ. 2007;14(12):2076–84.  https://doi.org/10.1038/sj.cdd.4402220.CrossRefPubMedGoogle Scholar
  41. 41.
    Garin MI, Chu CC, Golshayan D, Cernuda-Morollon E, Wait R, Lechler RI. Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood. 2007;109(5):2058–65.  https://doi.org/10.1182/blood-2006-04-016451.CrossRefPubMedGoogle Scholar
  42. 42.
    Hori J, Taniguchi H, Wang M, Oshima M, Azuma M. GITR ligand-mediated local expansion of regulatory T cells and immune privilege of corneal allografts. Invest Ophthalmol Vis Sci. 2010;51(12):6556–65.  https://doi.org/10.1167/iovs.09-4959.CrossRefPubMedGoogle Scholar
  43. 43.
    Sugita S, Yamada Y, Horie S, Nakamura O, Ishidoh K, Yamamoto Y, et al. Induction of T regulatory cells by cytotoxic T-lymphocyte antigen-2alpha on corneal endothelial cells. Invest Ophthalmol Vis Sci. 2011;52(5):2598–605.  https://doi.org/10.1167/iovs.10-6322.CrossRefPubMedGoogle Scholar
  44. 44.
    Walsh PT, Taylor DK, Turka LA. Tregs and transplantation tolerance. J Clin Invest. 2004;114(10):1398–403.  https://doi.org/10.1172/JCI23238.CrossRefPubMedGoogle Scholar
  45. 45.
    Huehn J, Hamann A. Homing to suppress: address codes for Treg migration. Trends Immunol. 2005;26(12):632–6.  https://doi.org/10.1016/j.it.2005.10.001.CrossRefPubMedGoogle Scholar
  46. 46.
    Siegmund K, Feuerer M, Siewert C, Ghani S, Haubold U, Dankof A, et al. Migration matters: regulatory T-cell compartmentalization determines suppressive activity in vivo. Blood. 2005;106(9):3097–104.  https://doi.org/10.1182/blood-2005-05-1864.CrossRefPubMedGoogle Scholar
  47. 47.
    Chen D, Bromberg JS. T regulatory cells and migration. Am J Transplant. 2006;6(7):1518–23.  https://doi.org/10.1111/j.1600-6143.2006.01372.x.CrossRefPubMedGoogle Scholar
  48. 48.
    Worbs T, Mempel TR, Bolter J, von Andrian UH, Forster R. CCR7 ligands stimulate the intranodal motility of T lymphocytes in vivo. J Exp Med. 2007;204(3):489–95.  https://doi.org/10.1084/jem.20061706.CrossRefPubMedGoogle Scholar
  49. 49.
    Forster R, Davalos-Misslitz AC, Rot A. CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol. 2008;8(5):362–71.  https://doi.org/10.1038/nri2297.CrossRefPubMedGoogle Scholar
  50. 50.
    Zhang H, Kong H, Zeng X, Guo L, Sun X, He S. Subsets of regulatory T cells and their roles in allergy. J Transl Med. 2014;12:125.  https://doi.org/10.1186/1479-5876-12-125.CrossRefPubMedGoogle Scholar
  51. 51.
    Abbas AK, Benoist C, Bluestone JA, Campbell DJ, Ghosh S, Hori S, et al. Regulatory T cells: recommendations to simplify the nomenclature. Nat Immunol. 2013;14(4):307–8.  https://doi.org/10.1038/ni.2554.CrossRefPubMedGoogle Scholar
  52. 52.
    Thornton AM, Korty PE, Tran DQ, Wohlfert EA, Murray PE, Belkaid Y, et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol. 2010;184(7):3433–41.  https://doi.org/10.4049/jimmunol.0904028.CrossRefPubMedGoogle Scholar
  53. 53.
    Weiss JM, Bilate AM, Gobert M, Ding Y. Curotto de Lafaille MA, Parkhurst CN et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J Exp Med. 2012;209(10):1723–42, S1.  https://doi.org/10.1084/jem.20120914.CrossRefPubMedGoogle Scholar
  54. 54.
    Yadav M, Louvet C, Davini D, Gardner JM, Martinez-Llordella M, Bailey-Bucktrout S, et al. Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J Exp Med. 2012;209(10):1713–22, S1–19.  https://doi.org/10.1084/jem.20120822.CrossRefPubMedGoogle Scholar
  55. 55.
    • Inomata T, Hua J, Di Zazzo A, Dana R. Impaired function of peripherally induced regulatory T cells in hosts at high risk of graft rejection. Sci Rep. 2016;6:39924.  https://doi.org/10.1038/srep39924 This study establishes higher susceptibility of pTregs to loss of suppressive function in hosts with inflamed graft beds compared to tTregs, and demonstrates the capacity of systemically adminstrated pTregs from low-risk hosts in improving long-term graft survival in high-risk hosts. CrossRefPubMedGoogle Scholar
  56. 56.
    Yadav M, Stephan S, Bluestone JA. Peripherally induced tregs - role in immune homeostasis and autoimmunity. Front Immunol. 2013;4:232.  https://doi.org/10.3389/fimmu.2013.00232.CrossRefPubMedGoogle Scholar
  57. 57.
    Hua J, Inomata T, Chen Y, Foulsham W, Stevenson W, Shiang T, et al. Pathological conversion of regulatory T cells is associated with loss of allotolerance. Sci Rep. 2018;8(1):7059.  https://doi.org/10.1038/s41598-018-25384-x.CrossRefPubMedGoogle Scholar
  58. 58.
    Haribhai D, Williams JB, Jia S, Nickerson D, Schmitt EG, Edwards B, et al. A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunity. 2011;35(1):109–22.  https://doi.org/10.1016/j.immuni.2011.03.029.CrossRefPubMedGoogle Scholar
  59. 59.
    Haribhai D, Lin W, Edwards B, Ziegelbauer J, Salzman NH, Carlson MR, et al. A central role for induced regulatory T cells in tolerance induction in experimental colitis. J Immunol. 2009;182(6):3461–8.  https://doi.org/10.4049/jimmunol.0802535.CrossRefPubMedGoogle Scholar
  60. 60.
    DuPage M, Bluestone JA. Harnessing the plasticity of CD4(+) T cells to treat immune-mediated disease. Nat Rev Immunol. 2016;16(3):149–63.  https://doi.org/10.1038/nri.2015.18.CrossRefPubMedGoogle Scholar
  61. 61.
    Sawant DV, Vignali DA. Once a Treg, always a Treg? Immunol Rev. 2014;259(1):173–91.  https://doi.org/10.1111/imr.12173.CrossRefPubMedGoogle Scholar
  62. 62.
    Sakaguchi S, Vignali DA, Rudensky AY, Niec RE, Waldmann H. The plasticity and stability of regulatory T cells. Nat Rev Immunol. 2013;13(6):461–7.  https://doi.org/10.1038/nri3464.CrossRefPubMedGoogle Scholar
  63. 63.
    • Tahvildari M, Omoto M, Chen Y, Emami-Naeini P, Inomata T, Dohlman TH, et al. In vivo expansion of regulatory T cells by low-dose interleukin-2 treatment increases allograft survival in corneal transplantation. Transplantation. 2016;100(3):525–32.  https://doi.org/10.1097/TP.0000000000001044 This study demonstrates the efficacy of systemic treatment with low-dose IL-2 in expanding Tregs and improving their suppressive function which lead to improved survival in high-risk corneal allograft recipients. CrossRefPubMedGoogle Scholar
  64. 64.
    Lopez-Abente J, Correa-Rocha R, Pion M. Functional mechanisms of Treg in the context of HIV infection and the Janus face of immune suppression. Front Immunol. 2016;7:192.  https://doi.org/10.3389/fimmu.2016.00192.CrossRefPubMedGoogle Scholar
  65. 65.
    Dana MR, Qian Y, Hamrah P. Twenty-five-year panorama of corneal immunology: emerging concepts in the immunopathogenesis of microbial keratitis, peripheral ulcerative keratitis, and corneal transplant rejection. Cornea. 2000;19(5):625–43.CrossRefPubMedGoogle Scholar
  66. 66.
    Amouzegar A, Chauhan SK, Dana R. Alloimmunity and tolerance in corneal transplantation. J Immunol. 2016;196(10):3983–91.  https://doi.org/10.4049/jimmunol.1600251.CrossRefPubMedGoogle Scholar
  67. 67.
    Inomata T, Hua J, Nakao T, Shiang T, Chiang H, Amouzegar A, et al. Corneal tissue from dry eye donors leads to enhanced graft rejection. Cornea. 2018;37(1):95–101.  https://doi.org/10.1097/ICO.0000000000001400.CrossRefPubMedGoogle Scholar
  68. 68.
    Rubtsov YP, Niec RE, Josefowicz S, Li L, Darce J, Mathis D, et al. Stability of the regulatory T cell lineage in vivo. Science. 2010;329(5999):1667–71.  https://doi.org/10.1126/science.1191996.CrossRefPubMedGoogle Scholar
  69. 69.
    Zhou X, Bailey-Bucktrout SL, Jeker LT, Penaranda C, Martinez-Llordella M, Ashby M, et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol. 2009;10(9):1000–7.  https://doi.org/10.1038/ni.1774.CrossRefPubMedGoogle Scholar
  70. 70.
    Bailey-Bucktrout SL, Martinez-Llordella M, Zhou X, Anthony B, Rosenthal W, Luche H, et al. Self-antigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response. Immunity. 2013;39(5):949–62.  https://doi.org/10.1016/j.immuni.2013.10.016.CrossRefPubMedGoogle Scholar
  71. 71.
    Guo X, Jie Y, Ren D, Zeng H, Zhang Y, He Y, et al. In vitro-expanded CD4(+)CD25(high)Foxp3(+) regulatory T cells controls corneal allograft rejection. Hum Immunol. 2012;73(11):1061–7.  https://doi.org/10.1016/j.humimm.2012.08.014.CrossRefPubMedGoogle Scholar
  72. 72.
    Cunnusamy K, Chen PW, Niederkorn JY. IL-17 promotes immune privilege of corneal allografts. J Immunol. 2010;185(8):4651–8.  https://doi.org/10.4049/jimmunol.1001576.CrossRefPubMedGoogle Scholar
  73. 73.
    Cunnusamy K, Chen PW, Niederkorn JY. IL-17A-dependent CD4+CD25+ regulatory T cells promote immune privilege of corneal allografts. J Immunol. 2011;186(12):6737–45.  https://doi.org/10.4049/jimmunol.1100101.CrossRefPubMedGoogle Scholar
  74. 74.
    Cunnusamy K, Paunicka K, Reyes N, Yang W, Chen PW, Niederkorn JY. Two different regulatory T cell populations that promote corneal allograft survival. Invest Ophthalmol Vis Sci. 2010;51(12):6566–74.  https://doi.org/10.1167/iovs.10-6161.CrossRefPubMedGoogle Scholar
  75. 75.
    Shen L, Jin Y, Freeman GJ, Sharpe AH, Dana MR. The function of donor versus recipient programmed death-ligand 1 in corneal allograft survival. J Immunol. 2007;179(6):3672–9.CrossRefPubMedGoogle Scholar
  76. 76.
    Kingsley CI, Karim M, Bushell AR, Wood KJ. CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4- and IL-10-dependent immunoregulation of alloresponses. J Immunol. 2002;168(3):1080–6.CrossRefPubMedGoogle Scholar
  77. 77.
    Tsang JY, Tanriver Y, Jiang S, Leung E, Ratnasothy K, Lombardi G, et al. Indefinite mouse heart allograft survival in recipient treated with CD4(+)CD25(+) regulatory T cells with indirect allospecificity and short term immunosuppression. Transpl Immunol. 2009;21(4):203–9.  https://doi.org/10.1016/j.trim.2009.05.003.CrossRefPubMedGoogle Scholar
  78. 78.
    Nguyen VH, Shashidhar S, Chang DS, Ho L, Kambham N, Bachmann M, et al. The impact of regulatory T cells on T-cell immunity following hematopoietic cell transplantation. Blood. 2008;111(2):945–53.  https://doi.org/10.1182/blood-2007-07-103895.CrossRefPubMedGoogle Scholar
  79. 79.
    Joffre O, Gorsse N, Romagnoli P, Hudrisier D, van Meerwijk JP. Induction of antigen-specific tolerance to bone marrow allografts with CD4+CD25+ T lymphocytes. Blood. 2004;103(11):4216–21.  https://doi.org/10.1182/blood-2004-01-0005.CrossRefPubMedGoogle Scholar
  80. 80.
    Sanchez-Fueyo A, Weber M, Domenig C, Strom TB, Zheng XX. Tracking the immunoregulatory mechanisms active during allograft tolerance. J Immunol. 2002;168(5):2274–81.CrossRefPubMedGoogle Scholar
  81. 81.
    Brunstein CG, Miller JS, Cao Q, McKenna DH, Hippen KL, Curtsinger J, et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood. 2011;117(3):1061–70.  https://doi.org/10.1182/blood-2010-07-293795.CrossRefPubMedGoogle Scholar
  82. 82.
    Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A, Grabowska M, Derkowska I, Juscinska J, et al. Therapy of type 1 diabetes with CD4(+)CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets - results of one year follow-up. Clin Immunol. 2014;153(1):23–30.  https://doi.org/10.1016/j.clim.2014.03.016.CrossRefPubMedGoogle Scholar
  83. 83.
    Edinger M, Hoffmann P. Regulatory T cells in stem cell transplantation: strategies and first clinical experiences. Curr Opin Immunol. 2011;23(5):679–84.  https://doi.org/10.1016/j.coi.2011.06.006.CrossRefPubMedGoogle Scholar
  84. 84.
    Di Ianni M, Falzetti F, Carotti A, Terenzi A, Castellino F, Bonifacio E, et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood. 2011;117(14):3921–8.  https://doi.org/10.1182/blood-2010-10-311894.CrossRefPubMedGoogle Scholar
  85. 85.
    Workman CJ, Szymczak-Workman AL, Collison LW, Pillai MR, Vignali DA. The development and function of regulatory T cells. Cell Mol Life Sci. 2009;66(16):2603–22.  https://doi.org/10.1007/s00018-009-0026-2.CrossRefPubMedGoogle Scholar
  86. 86.
    Lu L, Zhou X, Wang J, Zheng SG, Horwitz DA. Characterization of protective human CD4CD25 FOXP3 regulatory T cells generated with IL-2, TGF-beta and retinoic acid. PLoS One. 2010;5(12):e15150.  https://doi.org/10.1371/journal.pone.0015150.CrossRefPubMedGoogle Scholar
  87. 87.
    Chen Q, Kim YC, Laurence A, Punkosdy GA, Shevach EM. IL-2 controls the stability of Foxp3 expression in TGF-beta-induced Foxp3+ T cells in vivo. J Immunol. 2011;186(11):6329–37.  https://doi.org/10.4049/jimmunol.1100061.CrossRefPubMedGoogle Scholar
  88. 88.
    Xu Q, Tan X, Zhang Y, Jie Y, Pan Z. Subconjunctival injection of in vitro transforming growth factor-beta-induced regulatory T cells prolongs allogeneic corneal graft survival in mice. Int J Clin Exp Med. 2015;8(11):20271–8.PubMedGoogle Scholar
  89. 89.
    Barron L, Dooms H, Hoyer KK, Kuswanto W, Hofmann J, O'Gorman WE, et al. Cutting edge: mechanisms of IL-2-dependent maintenance of functional regulatory T cells. J Immunol. 2010;185(11):6426–30.  https://doi.org/10.4049/jimmunol.0903940.CrossRefPubMedGoogle Scholar
  90. 90.
    Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol. 2005;6(11):1142–51.  https://doi.org/10.1038/ni1263.CrossRefPubMedGoogle Scholar
  91. 91.
    Malek TR, Bayer AL. Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol. 2004;4(9):665–74.  https://doi.org/10.1038/nri1435.CrossRefPubMedGoogle Scholar
  92. 92.
    Gratz IK, Rosenblum MD, Abbas AK. The life of regulatory T cells. Ann N Y Acad Sci. 2013;1283:8–12.  https://doi.org/10.1111/nyas.12011.CrossRefPubMedGoogle Scholar
  93. 93.
    Wang X, Rickert M, Garcia KC. Structure of the quaternary complex of interleukin-2 with its alpha, beta, and gammac receptors. Science. 2005;310(5751):1159–63.  https://doi.org/10.1126/science.1117893.CrossRefPubMedGoogle Scholar
  94. 94.
    Malek TR. The biology of interleukin-2. Annu Rev Immunol. 2008;26:453–79.  https://doi.org/10.1146/annurev.immunol.26.021607.090357.CrossRefPubMedGoogle Scholar
  95. 95.
    Wang X, Wang W, Xu J, Le Q. Effect of rapamycin and interleukin-2 on regulatory CD4+CD25+Foxp3+ T cells in mice after allogenic corneal transplantation. Transplant Proc. 2013;45(2):528–37.  https://doi.org/10.1016/j.transproceed.2012.06.064.CrossRefPubMedGoogle Scholar
  96. 96.
    Safinia N, Scotta C, Vaikunthanathan T, Lechler RI, Lombardi G. Regulatory T cells: serious contenders in the promise for immunological tolerance in transplantation. Front Immunol. 2015;6:438.  https://doi.org/10.3389/fimmu.2015.00438.CrossRefPubMedGoogle Scholar
  97. 97.
    Chai JG, Coe D, Chen D, Simpson E, Dyson J, Scott D. In vitro expansion improves in vivo regulation by CD4+CD25+ regulatory T cells. J Immunol. 2008;180(2):858–69.CrossRefPubMedGoogle Scholar
  98. 98.
    Hildebrand A, Jarsch C, Kern Y, Bohringer D, Reinhard T, Schwartzkopff J. Subconjunctivally applied naive Tregs support corneal graft survival in baby rats. Mol Vis. 2014;20:1749–57.PubMedGoogle Scholar
  99. 99.
    Riquelme P, Geissler EK, Hutchinson JA. Alternative approaches to myeloid suppressor cell therapy in transplantation: comparing regulatory macrophages to tolerogenic DCs and MDSCs. Transplant Res. 2012;1(1):17.  https://doi.org/10.1186/2047-1440-1-17.CrossRefPubMedGoogle Scholar
  100. 100.
    Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.  https://doi.org/10.1038/32588.CrossRefPubMedGoogle Scholar
  101. 101.
    Yamagami S, Dana MR, Tsuru T. Draining lymph nodes play an essential role in alloimmunity generated in response to high-risk corneal transplantation. Cornea. 2002;21(4):405–9.CrossRefPubMedGoogle Scholar
  102. 102.
    Liu Y, Hamrah P, Zhang Q, Taylor AW, Dana MR. Draining lymph nodes of corneal transplant hosts exhibit evidence for donor major histocompatibility complex (MHC) class II-positive dendritic cells derived from MHC class II-negative grafts. J Exp Med. 2002;195(2):259–68.CrossRefPubMedGoogle Scholar
  103. 103.
    Dana R. Corneal antigen presentation: molecular regulation and functional implications. Ocul Surf. 2005;3(4 Suppl):S169–72.PubMedGoogle Scholar
  104. 104.
    Hamrah P, Dana MR. Corneal antigen-presenting cells. Chem Immunol Allergy. 2007;92:58–70.  https://doi.org/10.1159/000099254.CrossRefPubMedGoogle Scholar
  105. 105.
    Jin Y, Shen L, Chong EM, Hamrah P, Zhang Q, Chen L, et al. The chemokine receptor CCR7 mediates corneal antigen-presenting cell trafficking. Mol Vis. 2007;13:626–34.PubMedGoogle Scholar
  106. 106.
    Hua J, Stevenson W, Dohlman TH, Inomata T, Tahvildari M, Calcagno N, et al. Graft site microenvironment determines dendritic cell trafficking through the CCR7-CCL19/21 Axis. Invest Ophthalmol Vis Sci. 2016;57(3):1457–67.  https://doi.org/10.1167/iovs.15-17551.CrossRefPubMedGoogle Scholar
  107. 107.
    Morelli AE, Thomson AW. Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol. 2007;7(8):610–21.  https://doi.org/10.1038/nri2132.CrossRefPubMedGoogle Scholar
  108. 108.
    Natarajan S, Thomson AW. Tolerogenic dendritic cells and myeloid-derived suppressor cells: potential for regulation and therapy of liver auto- and alloimmunity. Immunobiology. 2010;215(9–10):698–703.  https://doi.org/10.1016/j.imbio.2010.05.024.CrossRefPubMedGoogle Scholar
  109. 109.
    Ezzelarab M, Thomson AW. Tolerogenic dendritic cells and their role in transplantation. Semin Immunol. 2011;23(4):252–63.  https://doi.org/10.1016/j.smim.2011.06.007.CrossRefPubMedGoogle Scholar
  110. 110.
    Hattori T, Saban DR, Emami-Naeini P, Chauhan SK, Funaki T, Ueno H, et al. Donor-derived, tolerogenic dendritic cells suppress immune rejection in the indirect allosensitization-dominant setting of corneal transplantation. J Leukoc Biol. 2012;91(4):621–7.  https://doi.org/10.1189/jlb.1011500.CrossRefPubMedGoogle Scholar
  111. 111.
    Tahvildari M, Emami-Naeini P, Omoto M, Mashaghi A, Chauhan SK, Dana R. Treatment of donor corneal tissue with immunomodulatory cytokines: a novel strategy to promote graft survival in high-risk corneal transplantation. Sci Rep. 2017;7(1):971.  https://doi.org/10.1038/s41598-017-01065-z.CrossRefPubMedGoogle Scholar
  112. 112.
    Yan F, Cai L, Hui Y, Chen S, Meng H, Huang Z. Tolerogenic dendritic cells suppress murine corneal allograft rejection by modulating CD28/CTLA-4 expression on regulatory T cells. Cell Biol Int. 2014;38(7):835–48.  https://doi.org/10.1002/cbin.10268.CrossRefPubMedGoogle Scholar
  113. 113.
    Tan X, Zeng H, Jie Y, Zhang Y, Xu Q, Pan Z. CD154 blockade modulates the ratio of Treg to Th1 cells and prolongs the survival of allogeneic corneal grafts in mice. Exp Ther Med. 2014;7(4):827–34.  https://doi.org/10.3892/etm.2014.1527.CrossRefPubMedGoogle Scholar
  114. 114.
    Grewal IS, Flavell RA. CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol. 1998;16:111–35.  https://doi.org/10.1146/annurev.immunol.16.1.111.CrossRefPubMedGoogle Scholar
  115. 115.
    Choi HJ, Lee JJ, Kim DH, Kim MK, Lee HJ, Ko AY, et al. Blockade of CD40-CD154 costimulatory pathway promotes long-term survival of full-thickness porcine corneal grafts in nonhuman primates: clinically applicable xenocorneal transplantation. Am J Transplant. 2015;15(3):628–41.  https://doi.org/10.1111/ajt.13057.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Maryam Tahvildari
    • 1
    • 2
  • Takenori Inomata
    • 1
    • 3
    • 4
  • Afsaneh Amouzegar
    • 1
  • Reza Dana
    • 1
  1. 1.Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology,Harvard Medical SchoolBostonUSA
  2. 2.Department of Ophthalmology, Kresge Eye InstituteWayne State UniversityDetroitUSA
  3. 3.Faculty of Medicine, Department of OphthalmologyJuntendo UniversityTokyoJapan
  4. 4.Faculty of Medicine, Department of Strategic Operative Room, Management and ImprovementJuntendo UniversityTokyoJapan

Personalised recommendations