Current Ophthalmology Reports

, Volume 6, Issue 4, pp 249–255 | Cite as

Characterization of the Dysfunctional Lens Syndrome and a Review of the Literature

  • George O. WaringIVEmail author
  • Karolinne M. Rocha
Cataract (CE Starr and A Brissette, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Cataract


Purpose of the Review

To characterize the dysfunctional lens syndrome and review the literature on the topic.

Recent Findings

Diagnostic devices may be used to objectively evaluate the aging changes of the crystalline lens in order to better characterize the entity. Opportunities exist for future evaluation of this emerging concept.


The term dysfunctional lens syndrome is gaining acceptance in our field. Objective diagnostic evaluation of aging crystalline lenses has been demonstrated to be useful in identification and characterization of the dysfunctional lens.


Dysfunctional lens syndrome Presbyopia Scatter Lens opacity Aberrations Vision correction 


Funding Information

Supported by an unrestricted grant to MUSC-SEI from Research to Prevent Blindness, Inc., New York, NY.

Compliance with Ethical Standards

Conflict of Interest

George O. Waring IV reports that he is an equity owner and medical advisory board member for Vis iometrics and a consultant for Oculus.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Holden BA, Fricke TR, Ho SM, Wong R, Schlenther G, Cronjé S, et al. Global vision impairment due to uncorrected presbyopia. Arch Ophthalmol. 2008;126(12):1731–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Davidson RS, Dhaliwal D, Hamilton DR, Jackson M, Patterson L, Stonecipher K, et al. ASCRS refractive cataract surgery subcommittee. Surgical correction of presbyopia. J Cataract Refract Surg. 2016;42(6):920–30.CrossRefPubMedGoogle Scholar
  3. 3.
    Piñero DP, Ortiz D, Alio JL. Ocular scattering. Optom Vis Sci. 2010;87(9):E682–96.CrossRefPubMedGoogle Scholar
  4. 4.
    Rocha KM, Nosé W, Bottós K, Bottós J, Morimoto L, Soriano E. Higher-order aberrations of age-related cataract. J Cataract Refract Surg. 2007;33(8):1442–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Medeiros S. Dysfunctional lens syndrome, a new way to educate patients. Published October 14, 2016. Accessed May 4, 2017.
  6. 6.
    Ghanem RC, de la Cruz J, Tobaigy FM, Ang LP, Azar DT. LASIK in the presbyopic age group: safety, efficacy, and predictability in 40- to 69-year-old patients. Ophthalmology. 2007;114(7):1303–10.CrossRefPubMedGoogle Scholar
  7. 7.
    Pokroy R, Mimouni M, Sela T, Munzer G, Kaiserman I. Myopic laser in situ keratomileusis retreatment: incidence and associations. J Cataract Refract Surg. 2016;42(10):1408–14.CrossRefPubMedGoogle Scholar
  8. 8.
    Domínguez-Vicent A, Birkeldh U, Laurell CG, Nilson M, Brautaset R. Objective assessment of nuclear and cortical cataracts through Scheimpflug images: agreement with the LOCS III Scale. PLoS One. 2016;11(2):e0149249.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    • Pan AP, Wang QM, Huang F, Huang JH, Bao FJ, Yu AY. Correlation among lens opacities classification system III grading, visual function index-14, Pentacam nucleus staging, and objective scatter index for cataract assessment. Am J Ophthalmol. 2015;159(2):241–7 This study reported correlation among historic lens grading systems and contemporary functional objective metrics. CrossRefPubMedGoogle Scholar
  10. 10.
    Kim JS, Chung SH, Joo CK. Clinical application of a Scheimpflug system for lens density measurements in phacoemulsification. J Cataract Refract Surg. 2009;35(7):1204–9 Erratum in: 2009;35(8):1483.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Díaz-Doutón F, Benito A, Pujol J, Arjona M, Güell JL, Artal P. Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument. Invest Ophthalmol Vis Sci. 2006;47(4):1710–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Franssen L, Coppens JE, van den Berg TJ. Compensation comparison method for assessment of retinal straylight. Invest Ophthalmol Vis Sci. 2006;47(2):768–76.CrossRefPubMedGoogle Scholar
  13. 13.
    •• Artal P, Benito A, Pérez GM, Alcón E, De Casas A, Pujol J, et al. An objective scatter index based on double-pass retinal images of a point source to classify cataracts. PLoS One. 2011;6(2):e16823 The was one of the first manuscripts correlating lens opacity and the objective scatter index utilizing double-pass wavefront technology.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Lim SA, Hwang J, Hwang KY, Chung SH. Objective assessment of nuclear cataract: comparison of double-pass and Scheimpflug systems. J Cataract Refract Surg. 2014;40(5):716–21.CrossRefPubMedGoogle Scholar
  15. 15.
    Cabot F, Saad A, McAlinden C, Haddad NM, Grise-Dulac A, Gatinel D. Objective assessment of crystalline lens opacity level by measuring ocular light scattering with a double-pass system. Am J Ophthalmol. 2013;155(4):629–35.CrossRefPubMedGoogle Scholar
  16. 16.
    Galliot F, Patel SR, Cochener B. Objective scatter index: working toward a new quantification of cataract? J Refract Surg. 2016;32(2):96–102.CrossRefPubMedGoogle Scholar
  17. 17.
    Alió JL, Schimchak P, Negri HP, Montés-Micó R. Crystalline lens optical dysfunction through aging. Ophthalmology. 2005;112(11):2022–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Magalhães FP, Costa EF, Cariello AJ, Rodrigues EB, Hofling-Lima AL. Comparative analysis of the nuclear lens opalescence by the Lens Opacities Classification System III with nuclear density values provided by Oculus Pentacam: a cross-section study using Pentacam Nucleus Staging software. Arq Bras Oftalmol. 2011;74(2):110–3.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Cook CA, Koretz JF, Pfahnl A, Hyun J, Kaufman PL. Aging of the human crystalline lens and anterior segment. Vis Res. 1994;34(22):2945–54.CrossRefPubMedGoogle Scholar
  20. 20.
    Faria-Correia F, Ramos I, Lopes B, Monteiro T, Franqueira N, Ambrósio R Jr. Correlations of objective metrics for quantifying dysfunctional lens syndrome with visual acuity and phacodynamics. J Refract Surg. 2017;33(2):79–83.CrossRefPubMedGoogle Scholar
  21. 21.
    Kirkwood BJ, Hendicott PL, Read SA, Pesudovs K. Repeatability and validity of lens densitometry measured with Scheimpflug imaging. J Cataract Refract Surg. 2009;35(7):1210–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Weiner X, Baumeister M, Kohnen T, Bühren J. Repeatability of lens densitometry using Scheimpflug imaging. J Cataract Refract Surg. 2014;40(5):756–63.CrossRefPubMedGoogle Scholar
  23. 23.
    Bullimore MA, Bailey IL. Considerations in the subjective assessment of cataract. Optom Vis Sci. 1993;70(11):880–5.CrossRefPubMedGoogle Scholar
  24. 24.
    Barrionuevo PA, Colombo EM, Vilaseca M, Pujol J, Issolio LA. Comparison between an objective and a psychophysical method for the evaluation of intraocular light scattering. J Opt Soc Am A Opt Image Sci Vis. 2012;29(7):1293–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Cox MJ, Atchison DA, Scott DH. Scatter and its implications for the measurement of optical image quality in human eyes. Optom Vis Sci. 2003;80(1):58–68.CrossRefPubMedGoogle Scholar
  26. 26.
    Castillo-Gómez A, Carmona-González D, Martínez-de-la-Casa JM, Palomino-Bautista C, García-Feijoo J. Evaluation of image quality after implantation of 2 diffractive multifocal intraocular lens models. J Cataract Refract Surg. 2009;35(7):1244–50.CrossRefPubMedGoogle Scholar
  27. 27.
    Chen T, Yu F, Lin H, Zhao Y, Chang P, Lin L, et al. Objective and subjective visual quality after implantation of all optic zone diffractive multifocal intraocular lenses: a prospective, case-control observational study. Br J Ophthalmol. 2016;100(11):1530–5.CrossRefPubMedGoogle Scholar
  28. 28.
    Yamauchi T, Tabuchi H, Takase K, Ohsugi H, Ohara Z, Kiuchi Y. Comparison of visual performance of multifocal intraocular lenses with same material monofocal intraocular lenses. PLoS One. 2013;8(6):e68236.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Waring Vision InstituteMount PleasantUSA
  2. 2.Department of Bioengineering, College of Engineering and ScienceClemson UniversityClemsonUSA
  3. 3.Department of OphthalmologyMedical University of South CarolinaCharlestonUSA
  4. 4.Storm Eye InstituteCharlestonUSA

Personalised recommendations