Current Radiology Reports

, 7:26 | Cite as

Vascular Imaging: Utilization of Dual-Energy Computed Tomography

  • Ahmed Alharthy
  • Matthew D’Mello
  • Hatim Alabsi
  • Nicolas Murray
  • Omar Metwally
  • Khaled Y. Elbanna
  • Mohammed F. Mohammed
  • Faisal KhosaEmail author
Part of the following topical collections:
  1. Computed Tomography


Purpose of Review

The goal of this review is to present a concise summary of the current literature on the use of dual-energy computed tomography (DECT) for vascular imaging.

Recent Findings

DECT techniques have shown significant promise and useful applications for the detection of subtle pulmonary embolism, intramural hematoma, active bleeding, and differentiation of bleed from contrast staining in the brain, with potentially less radiation and improved accuracy.


Vascular imaging with DECT has many new applications through enhanced technology and postprocessing algorithms.


Dual-energy computed tomography Vascular imaging Endoleak Aortic imaging Lower limb angiography Vascular trauma imaging 



Dr. Khosa is the recipient of the Vancouver Coastal Health – Healthcare Hero Award (2018); the Canadian Association of Radiologists/Canadian Radiological Foundation Leadership Scholarship (2017), and Vancouver Coastal Health Leadership Award (2017).

Compliance with Ethical Guidelines

Conflict of interest

Ahmed Alharthy, Matthew D’Mello, Hatim Alabsi, Nicolas Murray, Omar Metwally, Khaled Y. Elbanna, Mohammed F Mohammed, and Faisal Khosa declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article contains no studies with human or animal subjects conducted by any of the authors.


Recently published papers of particular interest have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Goldman L. Principles of CT and CT technology. J Nucl Med Technol. 2007;35(3):115–28.PubMedGoogle Scholar
  2. 2.
    Petersilka M, Bruder H, Krauss B, Stierstorfer K, Flohr T. Technical principles of dual source CT. Eur J Radiol. 2008;68(3):362–8.PubMedGoogle Scholar
  3. 3.
    Foley W, Shuman W, Siegel M, Sahani D, Boll D, Bolus D, et al. White paper of the society of computed body tomography and magnetic resonance on dual-energy CT, Part 2. J Comput Assist Tomogr. 2016;40(6):846–50.PubMedGoogle Scholar
  4. 4.
    De Cecco C, Schoepf U, Steinbach L, Boll D, Foley W, Kaza R, et al. White paper of the society of computed body tomography and magnetic resonance on dual-energy CT, Part 3. J Comput Assist Tomogr. 2017;41(1):1–7.PubMedGoogle Scholar
  5. 5.
    De Cecco C, Boll D, Bolus D, Foley W, Kaza R, Morgan D, et al. White paper of the society of computed body tomography and magnetic resonance on dual-energy CT, Part 4. J Comput Assist Tomogr. 2017;41(1):8–14.PubMedGoogle Scholar
  6. 6.
    Siegel M, Kaza R, Bolus D, Boll D, Rofsky N, De Cecco C, et al. White paper of the society of computed body tomography and magnetic resonance on dual-energy CT, Part 1. J Comput Assist Tomogr. 2016;40(6):841–5.PubMedGoogle Scholar
  7. 7.
    Johnson T, Krauß B, Sedlmair M, Grasruck M, Bruder H, Morhard D, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2006;17(6):1510–7.PubMedGoogle Scholar
  8. 8.
    Ali I, Wong W, Liang T, Khosa F, Mian M, Jalal S, et al. Clinical utility of dual-energy CT analysis of bone marrow edema in acute wrist fractures. Am J Roentgenol. 2018;210(4):842–7.Google Scholar
  9. 9.
    Elbanna K, Mohammed M, Huang S, Mak D, Dawe J, Joos E, et al. Correction to: Delayed manifestations of abdominal trauma: follow-up abdominopelvic CT in posttraumatic patients. Abdom Radiol. 2018;43(11):3204–5.Google Scholar
  10. 10.
    Mohammed M, Marais O, Min A, Ferguson D, Jalakhan S, Khosa F et al. Unenhanced dual-energy computed tomography. Invest Radiol. 2017; 1Google Scholar
  11. 11.
    Elbanna K, Mohammed M, Chahal T, Khosa F, Ali I, Berger F, Nicolaou S. Dual-energy CT in differentiating nonperforated gangrenous appendicitis from uncomplicated appendicitis. Am J Roentgenol. 2018;211(4):776–82.Google Scholar
  12. 12.
    Mohammed M, ElBanna K, Ferguson D, Harris A, Khosa F. Pheochromocytomas versus adenoma: role of venous phase CT enhancement. Am J Roentgenol. 2018;210(5):1073–8.Google Scholar
  13. 13.
    Wong W, Shah S, Murray N, Walstra F, Khosa F, Nicolaou S. Advanced musculoskeletal applications of dual-energy computed tomography. Radiol Clin N Am. 2018;56(4):587–600.PubMedGoogle Scholar
  14. 14.
    Lourenco P, Rawski R, Mohammed M, Khosa F, Nicolaou S, McLaughlin P. Dual-energy CT iodine mapping and 40-keV monoenergetic applications in the diagnosis of acute bowel ischemia. Am J Roentgenol. 2018;211(3):564–70.Google Scholar
  15. 15.
    Bonatti M, Lombardo F, Zamboni G, Pernter P, Pozzi Mucelli R, Bonatti G. Dual-energy CT of the brain: comparison between DECT angiography-derived virtual unenhanced images and true unenhanced images in the detection of intracranial haemorrhage. Eur Radiol. 2016;27(7):2690–7.PubMedGoogle Scholar
  16. 16.
    Morhard D, Fink C, Becker C, Reiser M, Nikolaou K. Value of automatic bone subtraction in cranial CT angiography: comparison of bone-subtracted vs. standard CT angiography in 100 patients. Eur Radiol. 2008;18(5):974–82.PubMedGoogle Scholar
  17. 17.
    Vlahos I, Chung R, Nair A, Morgan R. Dual-energy CT: vascular applications. Am J Roentgenol. 2012;199(5_supplement):S87–97.Google Scholar
  18. 18.
    Yuan R, Shuman W, Earls J, Hague C, Mumtaz H, Scott-Moncrieff A, et al. Reduced iodine load at CT pulmonary angiography with dual-energy monochromatic imaging: comparison with standard CT pulmonary angiography—a prospective randomized trial. Radiology. 2012;262(1):290–7.PubMedGoogle Scholar
  19. 19.
    Bamberg F, Dierks A, Nikolaou K, Reiser M, Becker C, Johnson T. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol. 2011;21(7):1424–9.PubMedGoogle Scholar
  20. 20.
    Mokin M, Kan P, Kass-Hout T, Abla A, Dumont T, Snyder K, et al. Intracerebral hemorrhage secondary to intravenous and endovascular intraarterial revascularization therapies in acute ischemic stroke: an update on risk factors, predictors, and management. Neurosurg Focus. 2012;32(4):E2.PubMedGoogle Scholar
  21. 21.
    Khatri P, Wechsler L, Broderick J. Intracranial hemorrhage associated with revascularization therapies. Stroke. 2007;38(2):431–40.PubMedGoogle Scholar
  22. 22.
    ••Tijssen M, Hofman P, Stadler A, van Zwam W, de Graaf R, van Oostenbrugge R et al. The role of dual energy CT in differentiating between brain haemorrhage and contrast medium after mechanical revascularisation in acute ischaemic stroke. Eur Radiol. 2013;24(4):834–40. This study examined 30 active ischemic stroke patients who received intra-arterial treatment. The authors showed that DECT had improved accuracy in discriminating between early contrast extravasation and intracranial hemorrhage. PubMedGoogle Scholar
  23. 23.
    Wada R, Aviv R, Fox A, Sahlas D, Gladstone D, Tomlinson G, et al. CT angiography “spot sign” predicts hematoma expansion in acute intracerebral hemorrhage. Stroke. 2007;38(4):1257–62.PubMedGoogle Scholar
  24. 24.
    Ferda J, Novák M, Mírka H, Baxa J, Ferdová E, Bednářová A, et al. The assessment of intracranial bleeding with virtual unenhanced imaging by means of dual-energy CT angiography. Eur Radiol. 2009;19(10):2518–22.PubMedGoogle Scholar
  25. 25.
    Tomandl B, Hammen T, Klotz E, Stemper B, Lell M. Bone-subtraction CT angiography for the evaluation of intracranial aneurysms. Am J Neuroradiol. 2006;27(1):55–9.PubMedGoogle Scholar
  26. 26.
    Lell M, Ditt H, Panknin C, Sayre J, Ruehm S, Klotz E, et al. Bone-subtraction CT angiography: evaluation of two different fully automated image-registration procedures for interscan motion compensation. Am J Neuroradiol. 2007;28(7):1362–8.PubMedGoogle Scholar
  27. 27.
    Morhard D, Fink C, Graser A, Reiser M, Becker C, Johnson T. Cervical and cranial computed tomographic angiography with automated bone removal: dual energy computed tomography versus standard computed tomography. Invest Radiol. 2009;44(5):293–7.PubMedGoogle Scholar
  28. 28.
    Lell M, Kramer M, Klotz E, Villablanca P, Ruehm S. Carotid computed tomography angiography with automated bone suppression: a comparative study between dual energy and bone subtraction techniques. Invest Radiol. 2009;44(6):322–8.PubMedGoogle Scholar
  29. 29.
    Behrendt F, Schmidt B, Plumhans C, Keil S, Woodruff S, Ackermann D, et al. Image fusion in dual energy computed tomography: effect on contrast enhancement, signal-to-noise ratio and image quality in computed tomography angiography. Invest Radiol. 2009;44(1):1–6.PubMedGoogle Scholar
  30. 30.
    •Sommer WH, Graser A, Becker CR, Clevert DA, Reiser MF, Nikolaou K, et al. Image quality of virtual noncontrast images derived from dual-energy CT angiography after endovascular aneurysm repair. J Vasc Interv Radiol. 2010; 21(3):315–21. This study looked at 70 patients after endovascular repair of aortic aneurysms. The authors showed that a single phase DECT protocol (virtual noncontrast images) was reliable in detecting endoleaks with the added benefit of a 44% reduction in radiation compared to a biphasic protocol. PubMedGoogle Scholar
  31. 31.
    Numburi UD, Schoenhagen P, Flamm SD, Greenberg RK, Primak AN, Saba OI, et al. Feasibility of dual-energy CT in the arterial phase: imaging after endovascular aortic repair. Am J Roentgenol. 2010;195(2):486–93.Google Scholar
  32. 32.
    Stavropoulos SW, Charagundla SR. Imaging techniques for detection and management of endoleaks after endovascular aortic aneurysm repair. Radiology. 2007;243(3):641–55.PubMedGoogle Scholar
  33. 33.
    Chandarana H, Godoy MCB, Vlahos I, Graser A, Babb J, Leidecker C, et al. Abdominal aorta: evaluation with dual-source dual-energy multidetector CT after endovascular repair of aneurysms—initial observations. Radiology. 2008;249(2):692–700.PubMedGoogle Scholar
  34. 34.
    Stolzmann P, Frauenfelder T, Pfammatter T, Peter N, Scheffel H, Lachat M, et al. Endoleaks after endovascular abdominal aortic aneurysm repair: detection with dual-energy dual-source CT. Radiology. 2008;249(2):692–700.Google Scholar
  35. 35.
    Ascenti G, Mazziotti S, Lamberto S, Bottari A, Caloggero S, Racchiusa S, et al. Dual-energy CT for detection of endoleaks after endovascular abdominal aneurysm repair: usefulness of colored iodine overlay. Am J Roentgenol. 2011;196(6):1408–14.Google Scholar
  36. 36.
    Apfaltrer P, Sudarski S, Schneider D, Nance JW, Haubenreisser H, Fink C, et al. Value of monoenergetic low-kV dual energy CT datasets for improved image quality of CT pulmonary angiography. Eur J Radiol. 2014;83(2):322–8.PubMedGoogle Scholar
  37. 37.
    Zhang L-J, Zhao Y-E, Wu S-Y, Yeh BM, Zhou C-S, Hu X-B, et al. Pulmonary embolism detection with dual-energy CT: experimental study of dual-source CT in rabbits. Radiology. 2009;252(1):61–70.PubMedGoogle Scholar
  38. 38.
    •Dournes G, Verdier D, Montaudon M, Bullier E, Rivière A, Dromer C, et al. Dual-energy CT perfusion and angiography in chronic thromboembolic pulmonary hypertension: diagnostic accuracy and concordance with radionuclide scintigraphy. Eur Radiol. 2014; 24(1):42–51. This study examined 40 patients with proven pulmonary hypertension who had both V/Q scintigraphy and DECT perfusion and angiography. The authors demonstrated that DECT perfusion is superior at locating segmental abnormalities. PubMedGoogle Scholar
  39. 39.
    Uyeda J, Patino M, Sahani D. Dual-energy CT in the acute abdomen. Curr Radiol Rep. 2015;3(6):20.Google Scholar
  40. 40.
    Ali I, Thomas C, Elbanna K, Mohammed M, Berger F, Khosa F. Gastrointestinal imaging: emerging role of dual-energy computed tomography. Curr Radiol Rep. 2017;5(8):31.Google Scholar
  41. 41.
    ••Sun H, Xue H-D, Wang Y-N, Qian J-M, Yu J-C, Zhu F, et al. Dual-source dual-energy computed tomography angiography for active gastrointestinal bleeding: A preliminary study. Clin Radiol. 2013; 68(2):139–47. This study examined 58 patients with signs of active gastrointestinal bleeding. The authors showed that DECT was both sensitive (88.6%) and specific (100%) for detecting gastrointestinal bleeding, while exposing the patient to only 30% of the radiation dose. PubMedGoogle Scholar
  42. 42.
    Yeh BM, Shepherd JA, Wang ZJ, Hui ST, Hartman RP, Prevrhal S. Dual-energy and low-kVp CT in the abdomen. Am J Roentgenol. 2009;193(1):47–54.Google Scholar
  43. 43.
    Uyeda J, Anderson SW, Kertesz J, Rhea JT, Soto JA. Pelvic CT angiography: application to blunt trauma using 64MDCT. Abdom Imaging. 2010;17(2):131–7.Google Scholar
  44. 44.
    Willmann JK, Baumert B, Schertler T, Wildermuth S, Pfammatter T, Verdun FR, et al. Aortoiliac and lower extremity arteries assessed with 16-detector row CT angiography: prospective comparison with digital subtraction angiography. Radiology. 2005;236(3):1083–93.PubMedGoogle Scholar
  45. 45.
    Sommer WH, Johnson TR, Becker CR, Arnoldi E, Kramer H, Reiser MF, et al. The value of dual-energy bone removal in maximum intensity projections of lower extremity computed tomography angiography. Invest Radiol. 2009;44(5):285–92.PubMedGoogle Scholar
  46. 46.
    Yamamoto S, McWilliams J, Arellano C, Marfori W, Cheng W, Mcnamara T, et al. Dual-energy CT angiography of pelvic and lower extremity arteries: dual-energy bone subtraction versus manual bone subtraction. Clin Radiol. 2009;64(11):1088–96.PubMedGoogle Scholar
  47. 47.
    Brockmann C, Jochum S, Sadick M, Huck K, Ziegler P, Fink C, et al. Dual-energy CT angiography in peripheral arterial occlusive disease. Cardiovasc Intervent Radiol. 2009;32(4):630–7.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ahmed Alharthy
    • 1
    • 3
  • Matthew D’Mello
    • 2
  • Hatim Alabsi
    • 1
    • 3
  • Nicolas Murray
    • 1
  • Omar Metwally
    • 1
  • Khaled Y. Elbanna
    • 1
  • Mohammed F. Mohammed
    • 1
    • 4
  • Faisal Khosa
    • 1
    Email author
  1. 1.Department of Radiology, Vancouver General HospitalUniversity of British ColumbiaVancouverCanada
  2. 2.Faculty of MedicineUniversity of British ColumbiaVancouverCanada
  3. 3.Department of Radiology, Faculty of Medicine, King Abdulaziz University HospitalKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Abdominal Imaging Section, Medical Imaging Department, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research CenterMinistry of the National Guard, Health AffairsRiyadhSaudi Arabia

Personalised recommendations