Advertisement

Thyroid Sonography: Nuclear Medicine Point of View

  • Anton StaudenherzEmail author
  • Thomas Leitha
Oncologic Imaging (S Delorme, Section Editor)
  • 29 Downloads
Part of the following topical collections:
  1. Oncologic Imaging

Abstract

Purpose of Review

The American Cancer Society estimated that cancer of the thyroid causes 53,990 new cases and about 2060 deaths in 2018. The chance of being diagnosed with thyroid cancer has risen and this increment seems to be the result of increased use of ultrasound, CT and MR imaging examinations for reasons unrelated to the thyroid. Up to 50% of adults in central Europe have one or multiple thyroid nodules. However, the prevalence of latent carcinoma in an unselected autopsy study was 8.6%. The main diagnostic task is to differentiate between benign and malignant lesions, preferably based upon on ultrasound parameters or scoring systems like TI-RADS.

Recent Findings

Although there are no pathognomonic features for malignant thyroid nodules at ultrasonography or any other imaging modality, sonography of the thyroid gland has beyond doubt become the imaging method of choice for the last three decades, combined with FNA in suspicious cases.

Summary

Several technological improvements like ultrasound elastography, and a proliferating literature of different scoring systems allow the conclusion that ultrasound is an important gatekeeper for further diagnostic steps but not capable, so far, to identify autonomy or malignancy with a sufficiently high accuracy.

Keywords

Thyroid Nodule Ultrasonography Elastography Fine needle aspiration Scintigraphy TI-RADS 

Notes

Compliance with Ethical Guidelines

Conflict of interest

Anton Staudenherz and Thomas Leitha each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Scrimshaw NS. The geographic pathology of thyroid disease. In: Hazard JB, Smith DE, editors. The thyroid. Baltimore: Williams and Wilkins; 1964. p. 102.Google Scholar
  2. 2.
    Wegelin C. Malignant disease of the thyroid gland and its relation to goiter in man and animals. Cancer Rev. 1928;3:297.Google Scholar
  3. 3.
    Global iodine nutrition scorecard. 2014. http://www.ign.org/cm_data/Scorecard_IGN_website_02_03_2015.pdf. Accessed 16 Feb 2019.
  4. 4.
    Zimmermann MB, Galetti V. Iodine intake as a risk factor for thyroid cancer: a comprehensive review of animal and human studies. Thyr Res. 2015;8:8.  https://doi.org/10.1186/s13044-015-0020-8.CrossRefGoogle Scholar
  5. 5.
    Vanderpass JB, Moreno-Reyes R. Hsibrical aspect of iodine deficiency control. Minerva Med. 2017;108(2):124–35.  https://doi.org/10.23736/S0026-4806.17.04884-4.CrossRefGoogle Scholar
  6. 6.
    Vanderpas Jean-Baptiste, Moreno-Reyes Rodrigo. Historical aspects of iodine deficiency control. Minerva Med. 2017;108(2):124–35.  https://doi.org/10.23736/S0026-4806.17.04884-4.CrossRefPubMedGoogle Scholar
  7. 7.
    Moreno-Reyes R, Kyrilli A, Lytrivi M, Bourmorck C, Chami R, Corvilain B. Is there still a role for thyroid scintigraphy in the workup of a thyroid nodule in the era of fine needle aspiration cytology and molecular testing? F1000Res. 2006;5:1000.  https://doi.org/10.12688/f1000research.7880.1.CrossRefGoogle Scholar
  8. 8.
    Russ G, Leboulleux S, Leenhardt L, Hegedüs L. Thyroid incidentalomas: epidemiology, risk stratification with ultrasound and workup. Eur Thyr J. 2014;3:154–63.CrossRefGoogle Scholar
  9. 9.
    Popoveniuc G, Jonklaas J. Thyroid Nodules. Med Clin N Am. 2012;96(2):329–49.  https://doi.org/10.1016/j.mcna.2012.02.002.CrossRefPubMedGoogle Scholar
  10. 10.
    British Thyroid Association, Royal College of Physicians. British thyroid association guidelines for the management of thyroid cancer. 2. 2007. https://onlinelibrary.wiley.com/doi/pdf/10.1111/cen.12515.
  11. 11.
    Choosing Wisely SNMMI. http://www.snmmi.org/ClinicalPractice/content.aspx?ItemNumber=9914. Accessed 15 Feb 2019.
  12. 12.
    Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–21.CrossRefGoogle Scholar
  13. 13.
    Chen AY, Jemal A, Ward EM. Increasing incidence of differentiated thyroid cancer in the United States, 1988–2005. Cancer. 2009;115:3801–7.CrossRefGoogle Scholar
  14. 14.
    Enewold L, Zhu K, Ron E, Marrogi AJ, Stojadinovic A, Peoples GE. Rising thyroid cancer incidence in the US by demographic and tumor characteristics. Cancer Epidemiol Biomark Prev. 2009;18:784–91.CrossRefGoogle Scholar
  15. 15.
    Morris LGT, Sikora AG, Tosteson TD, Davies L. The increasing incidence of thyroid cancer: the influence of access to care. Thyroid. 2013;23:886–92.CrossRefGoogle Scholar
  16. 16.
    Udelsman R, Zhang Y. The epidemic of thyroid cancer in the US: the role of endocrinologists and ultrasounds. Thyroid. 2014;24:472–9.CrossRefGoogle Scholar
  17. 17.
    Ahn HS, Kim HJ, Welch HG. Korea’s thyroid-cancer “epidemic”—screening and overdiagnosis. N Engl J Med. 2014;371:1765–7.CrossRefGoogle Scholar
  18. 18.
    Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff KG, Sherman SI, Sosa JA, Steward DL, Tuttle RM, Wartofsky L. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26:1–133.  https://doi.org/10.1089/thy.2015.0020.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Shin JH, Baek JH, Chung J, Ha EJ, Kim JH, Lee YH, Lim HK, Moon WJ, Na DG, Park JS, Choi YJ, Hahn SY, Jeon SJ, Jung SL, Kim DW, Kim EK, Kwak JY, Lee CY, Lee HJ, Lee JH, Lee JH, Lee KH, Park SW, Sung JY, Korean Society of Thyroid Radiology and Korean Society of Radiology. Ultrasonography diagnosis and imaging based management of thyroid nodules: revised Korean Society of Thyroid Radiology consensus statement and recommendations. Korean J Radiol. 2016;17:370–95.CrossRefGoogle Scholar
  20. 20.
    Cordes M, Kondrat P, Uder M, Kuwert T, Sasiadek M. Differential diagnostic ultrasound criteria of papillary and follicular carcinomas: a multivariate analysis. Rofo. 2014;186(5):489–95.  https://doi.org/10.1055/s-0034-1366282.CrossRefPubMedGoogle Scholar
  21. 21.
    Gharib H, Papini E, Paschke R, et al. American Association of clinical endocrinologists, Associazione medici endocrinologi, and European thyroid association medical guidelines for clinical practice for the diagnosis and management of thyroid nodules. Endocr Pract. 2010;16:1–43.CrossRefGoogle Scholar
  22. 22.
    Karkada M, Costa AF, Imran SA, Hart RD, Bullock M, Ilie G, Rajaraman M. Incomplete thyroid ultrasound reports for patients with thyroid nodules: implications regarding risk assessment and management. Am J Roentgenol. 2018;17:1–6.  https://doi.org/10.2214/AJR.18.20056.CrossRefGoogle Scholar
  23. 23.
    ••Rago T, Cantisani V, Ianni F, Chiovato L, Garberoglio R, Durante C, Frasoldati A, Spiezia S, Farina R, Vallone G, Pontecorvi A, Vitti P. Thyroid ultrasonography reporting: consensus of Italian Thyroid Association (AIT), Italian Society of Endocrinology (SIE), Italian Society of Ultrasonography in Medicine and Biology (SIUMB) and Ultrasound chapter of Italian Society of Medical Radiology (SIRM). J Endocrinol Invest. 2018;41(12):1435–1443.  https://doi.org/10.1007/s40618-018-0935-8. This study addresses a fundamental problem, namely the fluctuation of the reproducibility due to the different operator experience as well as the different device settings. Quality can only be achieved by standardizing the settings and in particular the unification of terminology. A simple risk stratification for thyroid nodules in conjunction with the risk of malignancy would lead to reasonable clinical results. However, the key to optimal diagnosis and reporting leads through an agreement in the diversified nationally and internationally societies.
  24. 24.
    Vorlander C, Wolff J, Saalabian S, et al. Real-time ultrasound elastography—a noninvasive diagnostic procedurefor evaluatingdominant thyroid nodules. Langenbecks Arch Surg. 2010;395:865–71.CrossRefGoogle Scholar
  25. 25.
    Sarvazyan AP, Rudenko OV, Swanson SD, Fowlkes JB, Emelianov SY. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol. 1998;24(9):1419–35.CrossRefGoogle Scholar
  26. 26.
    Bamber J, Cosgrove D, Dietrich CF, Fromageau J, Bojunga J, Calliada F, Cantisani V, Correas J-M, D’Onofrio M, Drakonaki EE, Fink M, Friedrich-Rust M, Gilja OH, Havre RF, Jenssen C, Klauser AS, Ohlinger R, Saftoiu A, Schaefer F, Sporea I, Piscaglia F. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: basic principles and technology. Ultraschall Med. 2013;34:169–84.  https://doi.org/10.1055/s-0033-1335205.CrossRefPubMedGoogle Scholar
  27. 27.
    Asteria C, Giovanardi A, Pizzocaro A, et al. US-elastographyinthedifferential diagnosis of benign and malignant thyroid nodules. Thyroid. 2008;18:523–31.CrossRefGoogle Scholar
  28. 28.
    Vorlander C, Wolff J, Saalabian S, et al. Real-time ultrasound elastography—a noninvasive diagnostic procedurefor evaluating dominant thyroid nodules. Langenbecks Arch Surg. 2010;395:865–71.CrossRefGoogle Scholar
  29. 29.
    Bojunga J, Herrmann E, Meyer G, et al. Real-time elastography for the differentiation of benign and malignant thyroid nodules:ameta-analysis. Thyroid. 2010;20:1145–50.CrossRefGoogle Scholar
  30. 30.
    Moon HJ, Kim EK, Yoon JH, et al. Clinical implication of elastography as a prognostic factor of papillary thyroid microcarcinoma. Ann Surg Oncol. 2012;19:2279–87.CrossRefGoogle Scholar
  31. 31.
    Cosgrove D, Piscaglia F, Bamber J, Bojunga J, Correas JM, Gilja OH, et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications. Ultraschall Med. 2013;34(3):238–53.CrossRefGoogle Scholar
  32. 32.
    Asteria C, Giovanardi A, Pizzocaro A, Cozzaglio L, Morabito A, Somalvico F, Zoppo A. US-elastography in the differential diagnosis of benign and malignant thyroid nodules. Thyroid. 2008;18(5):523.CrossRefGoogle Scholar
  33. 33.
    Dighe M, Hippe DS, Thiel J. Artifacts in shear wave elastography images of thyroid nodules. Ultrasound Med Biol. 2018;44(6):1170–6.  https://doi.org/10.1016/j.ultrasmedbio.2018.02.007.CrossRefPubMedGoogle Scholar
  34. 34.
    Magri F, Chytiris S, Chiovato L. The role of elastography in thyroid ultrasonography. Curr Opin Endocrinol Diabetes Obes. 2016;23(5):416–22.CrossRefGoogle Scholar
  35. 35.
    Cosgrove D, et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: clinical applications. Ultraschall Med. 2013;34:238–53.CrossRefGoogle Scholar
  36. 36.
    Bard D, Verger P, Hubert P. Chernobyl, 10 years after: health consequences. Epidemiol Rev. 1997;19:187–204.CrossRefGoogle Scholar
  37. 37.
    Bounacer A, Wicker R, Caillou B, Cailleux AF, Sarasin A, Schlumberger M, et al. High prevalence of activating ret proto-oncogene rearrangements, in thyroid tumors from patients who had received external radiation. Oncogene. 1997;15:1263–73.CrossRefGoogle Scholar
  38. 38.
    Mazonakis M, Tzedakis A, Damilakis J, Gourtsoyiannis N. Thyroid dose from common head and neck CT examinations in children: is there an excess riskfor thyroid cancer induction? Eur Radiol. 2007;17:1352–7.CrossRefGoogle Scholar
  39. 39.
    Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371:569–78.CrossRefGoogle Scholar
  40. 40.
    Rinaldi S, Lise M, Clavel-Chapelon F, Boutron-Ruault MC, Guillas G, Overvad K, et al. Body size and risk of differentiated thyroid carcinomas: findings from the EPIC study. Int J Cancer. 2012;131:E1004–14.CrossRefGoogle Scholar
  41. 41.
    Hallgren S, Darnerud PO. Polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs) and chlorinated paraffins (CPs) in rats—testing interactions and mechanisms for thyroid hormone effects. Toxicology. 2002;177:227–43.CrossRefGoogle Scholar
  42. 42.
    Zhang Y, Guo GL, Han X, Zhu C, Kilfoy BA, Zhu Y, et al. Do polybrominated diphenyl ethers (PBDEs) increase the risk of thyroid cancer? Biosci Hypotheses. 2008;1:195–9.CrossRefGoogle Scholar
  43. 43.
    Franceschi S, Preston-Martin S, Dal Maso L, Negri E, La Vecchia C, Mack WJ, et al. A pooled analysis of case–control studies of thyroid cancer. IV. Benign thyroid diseases. Cancer Causes Control. 1999;10:583–95.CrossRefGoogle Scholar
  44. 44.
    Magri F, Chytiris S, Chiovato L. The role of elastography in thyroid ultrasonography. Curr Opin Endocrinol, Diabetes Obes. 2016;23(5):416–22.CrossRefGoogle Scholar
  45. 45.
    Nachiappan AC, Metwalli ZA, Hailey BS, Patel RA, Ostrowski ML, Wynne DM. The thyroid: review of imaging features and biopsy techniques with radiologic-pathologic correlation. RadioGraphics. 2014;34:276–93.CrossRefGoogle Scholar
  46. 46.
    Kim M, Jeon M, Han M, Lee JH, Song DE, Baek JH, Kim TY, Kim WB, Shong Y, Kim WG. Tumor growth rate does not predict malignancy in surgically resected thyroid nodules classified as Bethesda category III with architectural atypia. Thyroid. 2018.  https://doi.org/10.1089/thy.2018.0366.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Migda B, Słapa R, Bierca J, et al. Differentiation of thyroid nodules in multinodular goiter with the application of technical ultraso und advances—initial results. Endokrynol Pol. 2016;67(2):157–65.  https://doi.org/10.5603/EP.a2016.0026.CrossRefPubMedGoogle Scholar
  48. 48.
    Dobruch-Sobczak K, Zalewska EB, Gumińska A, et al. Diagnostic performance of shear wave elastography parameters alone and in combination with conventional B-mode ultrasound parameters for the characterization of thyroid nodules: a prospective. Dual-center study. Ultrasound Med Biol. 2016;42(12):2803–11.  https://doi.org/10.1016/j.ultrasmedbio.2016.07.010.CrossRefPubMedGoogle Scholar
  49. 49.
    Cantisani V, Lodise P, Di Rocco G, et al. Diagnostic accuracy and interobserver agreement of quasistatic ultrasound elastography in the diagnosis of thyroid nodules. Ultraschall Med. 2015;36(2):162–7.  https://doi.org/10.1055/s-0034-1366467.CrossRefPubMedGoogle Scholar
  50. 50.
    Moon WJ, Baek JH, Jung SL, Kim DW, Kim EK, Kim JY, Korean Society of Thyroid Radiology (KSThR), Korean Society of Radiology, et al. Ultrasonography and the ultrasound-based management of thyroid nodules: consensus statement and recommendations. Korean J Radiol. 2011;12:1–14.CrossRefGoogle Scholar
  51. 51.
    Gharib H, Papini E, Paschke R, Duick DS, Valcavi R, Hegedüs L, et al. AACE/AME/ETA task force on thyroid nodules. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and EuropeanThyroid Association medical guidelines for clinical practice for the diagnosis and management of thyroid nodules. Endocr Pract. 2010;16(Suppl 1):1–43.CrossRefGoogle Scholar
  52. 52.
    Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1–133):18.Google Scholar
  53. 53.
    Perros P, Boelaert K, Colley S, Evans C, Evans RM, Gerrard Ba G, et al. Guidelines for the management of thyroid cancer. Clin Endocrinol (Oxf). 2014;81(Suppl 1):1–122.CrossRefGoogle Scholar
  54. 54.
    National Comprehensive Cancer Network. https://www.nccn.org/professionals/physician_gls/pdf/thyroid.pdf. Accessed 14 Aug 2015.
  55. 55.
    Dobruch-Sobczak K, Zalewska EB, Gumińska A, et al. Diagnostic performance of shear wave elastography parameters alone and in combination with conventional B-mode ultrasound parameters for the characterization of thyroid nodules: a prospective. Dual-Center Study. Ultrasound Med Biol. 2016;42(12):2803–11.  https://doi.org/10.1016/j.ultrasmedbio.2016.07.010.CrossRefPubMedGoogle Scholar
  56. 56.
    Frates MC, Benson CB, Charboneau JW, et al. Management of thyroid nodules detected at US: society of radiologists in ultrasound consensus conference statement. Radiology. 2005;237:794–800.CrossRefGoogle Scholar
  57. 57.
    Shin JH, Baek JH, Chung J, et al. Ultrasonography diagnosis and imaging-based management of thyroid nodules: revised Korean Society of thyroid radiology consensus statement and recommendations. Korean J Radiol. 2016;17:370–95.CrossRefGoogle Scholar
  58. 58.
    Haugen BR, Alexander EK, Bible KC, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26:1–133.CrossRefGoogle Scholar
  59. 59.
    Russ G, St J, Bonnema MF, Erdogan C, Durante R, Ngu L Leenhardt. European thyroid association guidelines for ultrasound malignancy risk stratification of thyroid nodules in adults: the EU-TIRADS. Eur Thyroid J. 2017;6:225–37.  https://doi.org/10.1159/000478927.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Horvath E, Silva CF, Majlis S, Rodriguez I, Skoknic V, Castro A, Rojas H, Niedmann J-P, Madrid A, Capdeville F, Whittle C, Rossi R, Domínguez M, Tala H. Prospective validation of the ultrasound based TIRADS (thyroid imaging reporting and data system) classification: results in surgically resected thyroid nodules. Eur Radiol. 2017;27:2619–28.  https://doi.org/10.1007/s00330-016-4605-y.CrossRefPubMedGoogle Scholar
  61. 61.
    •Migda B, Migda M, Migda AN, Bierca J, Slowinska-Srzednicka J, Jakubowski W, Slapa RZ. Evaluation of four variants of the thyroid imaging reporting and data system (TIRADS) classification in patients with multinodular goitre—initial study. Endokrynologia Polska 2018; 69(2); 156–162  https://doi.org/10.5603/ep.a2018.0012. The paper compares several scoring systems for the sonographic finding in Thyroid lesions. The differences are analyzed and discussed on the basis of real patients with multinodular goiter. Whether one of the TI-RADS classifications will become adopted in the daily routine remains open. Previous systems had a high negative predictive value but mostly in subgroups and thus it remains to be shown which of the newer scoring systems will prove themselves in reality.
  62. 62.
    Kwak JY, Han KH, Yoon JH, et al. Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk. Radiology. 2011;260(3):892–9.  https://doi.org/10.1148/radiol.11110206.CrossRefPubMedGoogle Scholar
  63. 63.
    Sahli ZT, Karipineni F, Hang JF, Canner JK, Mathur A, Prescott JD, Sheth S, Ali SZ, Zeiger MA. The association between the ultrasonography TIRADS classification system and surgical pathology among indeterminate thyroid nodules. Surgery. 2018;6060(18):30629.  https://doi.org/10.1016/j.surg.2018.04.094.CrossRefGoogle Scholar
  64. 64.
    AIUM practice parameter for the performance of a thyroid and parathyroid ultrasound examination. J Ultrasound Med 2016;35: 1-11.Google Scholar
  65. 65.
    Verburg FA, Mäder U, Giovanella L, Luster M, Reiners C. Low or undetectable basal thyroglobulin levels obviate the need for neck ultrasound in differentiated thyroid cancer patients after total thyroidectomy and 131I ablation. Thyroid. 2017;28:6.  https://doi.org/10.1089/thy.2017.0352.CrossRefGoogle Scholar
  66. 66.
    Zhan J, Ding H. Application of contrast-enhanced ultrasound for evaluation of thyroid nodules. Ultrasonography. 2018;37:288–97.  https://doi.org/10.14366/usg.18019.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Sidhu PS, Cantisani V, Dietrich CF, Helge Gilja O, Saftoiu A, Bartels E, Bertolotto M, Calliada F, Clevert D-A, Cosgrove D, Deganello A, D’Onofrio M, Drudi FM, Freeman S, Harvey C, Jenssen C, Jung E-M, Klauser AS, Lassau N, Meloni MF, Leen E, Nicolau C, Nolsoe C, Piscaglia F, Prada F, Prosch H, Radzina M, Savelli L, Weskott H-P, Wijkstra H. The EFSUMB guidelines and recommendations for the clinical practice of contrast-enhanced ultrasound (CEUS) in non-hepatic applications: update 2017 (long version). Ultraschall Med. 2018;39:e2–44.CrossRefGoogle Scholar
  68. 68.
    Sollini M, Cozzi L, Chiti A, Kirienko M. Review: texture analysis and machine learning to characterize suspected thyroid nodules and differentiated thyroid cancer: where do we stand? Eur J Radiol. 2018;99:1–8.CrossRefGoogle Scholar
  69. 69.
    Chi J, Walia E, Babyn P, Wang J, Groot G, Eramian M. Thyroid nodule classification in ultrasound images by fine-tuning deep convolutional neural network. J Digit Imaging. 2017;30(4):477–86.  https://doi.org/10.1007/s10278-017-9997-y.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Nuclear Medicine, Molecular Imaging and Special Endocrinology at Univ. Clinic St. Poelten – Karl Landsteiner Private UniversitySt. PöltenAustria
  2. 2.Department of Nuclear Medicine Diagnostic and TherapyDonauspital – SMZ OstViennaAustria

Personalised recommendations