Advertisement

State-of-the-Art Imaging in Cardiac Oncology

  • Pratik Patel
  • Suma KonetyEmail author
Cardiovascular Imaging (K Ordovas, Section Editor)
  • 10 Downloads
Part of the following topical collections:
  1. Cardiovascular Imaging

Abstract

Purpose of Review

Imaging modalities play an important role in the diagnosis and management of cardiotoxicity and cardiac tumors. In this review, we provide an overview of the imaging modalities that are relevant to the field of cardio-oncology.

Recent Findings

Cardiac magnetic resonance provides comprehensive tissue characterization in the assessment of cardiac tumors and cardiomyopathy. The combination of positron emission tomography/computed tomography offers improved localization of lesions, staging, targeting of biopsy and therapy, and greater confidence in interpretation.

Summary

Overall, cardiac imaging plays a critical role in the assessment and management of cardiac tumors either for surgical planning or for initiation of appropriate cancer therapies. For certain higher risk cancer patients and survivors, routine surveillance with cardiac imaging may be warranted so appropriate interventions can be instituted to stabilize or even improve the cardiac dysfunction.

Keywords

Cardio-oncology Cardiovascular imaging Cardiac imaging Cardiac magnetic resonance 

Notes

Compliance with Ethical Guidelines

Conflict of interest

Pratik Patel and Suma Konety each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Recently published papers of particular interest have been highlighted as: • Of importance

  1. 1.
    Lam KY, Dickens P, Chan AC. Tumors of the heart. A 20-year experience with a review of 12,485 consecutive autopsies. Arch Pathol Lab Med. 1993;117(10):1027–31.PubMedGoogle Scholar
  2. 2.
    Elbardissi AW, Dearani JA, Daly RC, Mullany CJ, Orszulak TA, Puga FJ, et al. Survival after resection of primary cardiac tumors: a 48-year experience. Circulation. 2008;118(14 Suppl):S7–15.PubMedCrossRefGoogle Scholar
  3. 3.
    Silverman NA. Primary cardiac tumors. Ann Surg. 1980;191(2):127–38.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    • Tamene AM, Masri C, Konety SH. Cardiovascular MR imaging in cardio-oncology. Magn Reson Imaging Clin N Am. 2015;23(1):105–16. This is an excellent review paper that highlights the important role of cardiac MRI in evaluation of cardiac masses and monitoring of cancer therapy related cadiotoxicty. Google Scholar
  5. 5.
    • Motwani M, Kidambi A, Herzog BA, Uddin A, Greenwood JP, Plein S. MR imaging of cardiac tumors and masses: a review of methods and clinical applications. Radiology. 2013;268(1):26–43. This review article describes various MRI sequences used to analyze a cardiac mass. Google Scholar
  6. 6.
    Takahashi A, Harada M. Multimodal cardiovascular imaging of cardiac tumors. Ann Nucl Cardiol. 2016;2(1):61–7.CrossRefGoogle Scholar
  7. 7.
    Barkhausen J, Hunold P, Eggebrecht H, Schüler WO, Sabin GV, Erbel R, et al. Detection and characterization of intracardiac thrombi on MR imaging. AJR Am J Roentgenol. 2002;179(6):1539–44.PubMedCrossRefGoogle Scholar
  8. 8.
    Chalian H, O’Donnell JK, Bolen M, Rajiah P. Incremental value of PET and MRI in the evaluation of cardiovascular abnormalities. Insights Imaging. 2016;7(4):485–503.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    • Hoffmann U, Globits S, Schima W, Loewe C, Puig S, Oberhuber G, et al. Usefulness of magnetic resonance imaging of cardiac and paracardiac masses. Am J Cardiol. 2003;92(7):890–5. This study demonstrated that certain MRI features differentiated benign vs malignant nature of a cardiac mass. Google Scholar
  10. 10.
    • Pazos-López P, Pozo E, Siqueira ME, García-Lunar I, Cham M, Jacobi A, et al. Value of CMR for the differential diagnosis of cardiac masses. JACC Cardiovasc Imaging. 2014;7(9):896–905. This study also demonstrated that certain MRI features differentiated benign vs malignant nature of a cardiac mass. Google Scholar
  11. 11.
    Giusca S, Mereles D, Ochs A, Buss S, André F, Seitz S, et al. Incremental value of cardiac magnetic resonance for the evaluation of cardiac tumors in adults: experience of a high volume tertiary cardiology centre. Int J Cardiovasc Imaging. 2017;33(6):879–88.PubMedCrossRefGoogle Scholar
  12. 12.
    • Patel R, Lim RP, Saric M, Nayar A, Babb J, Ettel M, et al. Diagnostic performance of cardiac magnetic resonance imaging and echocardiography in evaluation of cardiac and paracardiac masses. Am J Cardiol. 2016;117(1):135–40. This study demonstrated that MRI had higher correlation with histopathological diagnosis of a cardiac mass than echo. 45 out of 65 patients had histopathologic diagnosis of cardiac mass. Google Scholar
  13. 13.
    Wong TZ, Paulson EK, Nelson RC, Patz EF, Coleman RE. Practical approach to diagnostic CT combined with PET. AJR Am J Roentgenol. 2007;188(3):622–9.PubMedCrossRefGoogle Scholar
  14. 14.
    • Rahbar K, Seifarth H, Schäfers M, Stegger L, Hoffmeier A, Spieker T, et al. Differentiation of malignant and benign cardiac tumors using 18F-FDG PET/CT. J Nucl Med. 2012;53(6):856–63. PET-CT differentiated benign vs malignant nature of a cardiac mass. Google Scholar
  15. 15.
    Catalano OA, Rosen BR, Sahani DV, Hahn PF, Guimaraes AR, Vangel MG, et al. Clinical impact of PET/MR imaging in patients with cancer undergoing same-day PET/CT: initial experience in 134 patients–a hypothesis-generating exploratory study. Radiology. 2013;269(3):857–69.PubMedCrossRefGoogle Scholar
  16. 16.
    Sinha S, Sinha U, Czernin J, Porenta G, Schelbert HR. Noninvasive assessment of myocardial perfusion and metabolism: feasibility of registering gated MR and PET images. AJR Am J Roentgenol. 1995;164(2):301–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Partovi S, Kohan A, Rubbert C, Vercher-Conejero JL, Gaeta C, Yuh R, et al. Clinical oncologic applications of PET/MRI: a new horizon. Am J Nucl Med Mol Imaging. 2014;4(2):202–12.PubMedPubMedCentralGoogle Scholar
  18. 18.
    • Nensa F, Tezgah E, Poeppel TD, Jensen CJ, Schelhorn J, Köhler J, et al. Integrated 18F-FDG PET/MR imaging in the assessment of cardiac masses: a pilot study. J Nucl Med. 2015;56(2):255–60. PET-MRI differentiated benign vs malignant nature of a cardiac mass. Google Scholar
  19. 19.
    Yaddanapudi K, Brunken R, Tan CD, Rodriguez ER, Bolen MA. PET-MR imaging in evaluation of cardiac and paracardiac masses with histopathologic correlation. JACC Cardiovasc Imaging. 2016;9(1):82–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Lau JM, Laforest R, Nensa F, Zheng J, Gropler RJ, Woodard PK. Cardiac applications of PET/MR imaging. Magn Reson Imaging Clin N Am. 2017;25(2):325–33.PubMedCrossRefGoogle Scholar
  21. 21.
    Glockner JF. Magnetic resonance imaging and computed tomography of cardiac masses and pseudomasses in the atrioventricular groove. Can Assoc Radiol J. 2018;69(1):78–91.PubMedCrossRefGoogle Scholar
  22. 22.
    Shin W, Choe YH, Kim SM, Song IY, Kim SS. Detection of cardiac myxomas with non-contrast chest CT. Acta Radiol. 2014;55(3):273–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Quan H, Liang P, Tan Y. The value of multi-slice CT imaging in cardiac myxomas in comparison with follow-up screening in thoracoscopic surgery. Cell Biochem Biophys. 2015;73(2):565–9.PubMedCrossRefGoogle Scholar
  24. 24.
    • van Rosendael AR, Daniëls LA, Dimitriu-Leen AC, Smit JM, van Rosendael PJ, Schalij MJ, et al. Different manifestation of irradiation induced coronary artery disease detected with coronary computed tomography compared with matched non-irradiated controls. Radiother Oncol. 2017;125(1):55–61. This study demonstrated that coronary CTA can be used to screen for significant CAD in long term survivors of lymphoma who received prior radiation therapy. Google Scholar
  25. 25.
    Küpeli S, Hazirolan T, Varan A, Akata D, Alehan D, Hayran M, et al. Evaluation of coronary artery disease by computed tomography angiography in patients treated for childhood Hodgkin’s lymphoma. J Clin Oncol. 2010;28(6):1025–30.PubMedCrossRefGoogle Scholar
  26. 26.
    Mulrooney DA, Nunnery SE, Armstrong GT, Ness KK, Srivastava D, Donovan FD, et al. Coronary artery disease detected by coronary computed tomography angiography in adult survivors of childhood Hodgkin lymphoma. Cancer. 2014;120(22):3536–44.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    van Leeuwen-Segarceanu EM, Bos WJ, Dorresteijn LD, Rensing BJ, der Heyden JA, Vogels OJ, et al. Screening Hodgkin lymphoma survivors for radiotherapy induced cardiovascular disease. Cancer Treat Rev. 2011;37(5):391–403.PubMedCrossRefGoogle Scholar
  28. 28.
    Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2014;27(9):911–39.PubMedCrossRefGoogle Scholar
  29. 29.
    Tan-Chiu E, Yothers G, Romond E, Geyer CE, Ewer M, Keefe D, et al. Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2-overexpressing breast cancer: NSABP B-31. J Clin Oncol. 2005;23(31):7811–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Tan TC, et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging. 2012;5(5):596–603.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Negishi K, Negishi T, Hare JL, Haluska BA, Plana JC, Marwick TH. Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity. J Am Soc Echocardiogr. 2013;26(5):493–8.PubMedCrossRefGoogle Scholar
  32. 32.
    • Ali MT, Yucel E, Bouras S, Wang L, Fei HW, Halpern EF, et al. Myocardial Strain Is Associated with Adverse Clinical Cardiac Events in Patients Treated with Anthracyclines. J Am Soc Echocardiogr. 2016;29(6):522–7. This study demostrated that abnormal myocardial strain at baseline was associated with higher incidence of cardiac death and heart failure over ~ 4 years. Google Scholar
  33. 33.
    • Rhea IB, Uppuluri S, Sawada S, Schneider BP, Feigenbaum H. Incremental prognostic value of echocardiographic strain and its association with mortality in cancer patients. J Am Soc Echocardiogr. 2015;28(6):667–73. This study demonstrated that abnormal strain at baseline was associated with increased all-cause mortality over ~ 2 years. Google Scholar
  34. 34.
    Gottdiener JS, Mathisen DJ, Borer JS, Bonow RO, Myers CE, Barr LH, et al. Doxorubicin cardiotoxicity: assessment of late left ventricular dysfunction by radionuclide cineangiography. Ann Intern Med. 1981;94(4 pt 1):430–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Choi BW, Berger HJ, Schwartz PE, Alexander J, Wackers FJ, Gottschalk A, et al. Serial radionuclide assessment of doxorubicin cardiotoxicity in cancer patients with abnormal baseline resting left ventricular performance. Am Heart J. 1983;106(4 Pt 1):638–43.PubMedCrossRefGoogle Scholar
  36. 36.
    Bellenger NG, Burgess MI, Ray SG, Lahiri A, Coats AJ, Cleland JG, et al. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur Heart J. 2000;21(16):1387–96.PubMedCrossRefGoogle Scholar
  37. 37.
    Naik MM, Diamond GA, Pai T, Soffer A, Siegel RJ. Correspondence of left ventricular ejection fraction determinations from two-dimensional echocardiography, radionuclide angiography and contrast cineangiography. J Am Coll Cardiol. 1995;25(4):937–42.PubMedCrossRefGoogle Scholar
  38. 38.
    van Royen N, Jaffe CC, Krumholz HM, Johnson KM, Lynch PJ, Natale D, et al. Comparison and reproducibility of visual echocardiographic and quantitative radionuclide left ventricular ejection fractions. Am J Cardiol. 1996;77(10):843–50.PubMedCrossRefGoogle Scholar
  39. 39.
    Gulati G, Heck SL, Ree AH, Hoffmann P, Schulz-Menger J, Fagerland MW, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J. 2016;37(21):1671–80.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Pituskin E, Mackey JR, Koshman S, Jassal D, Pitz M, Haykowsky MJ, et al. Multidisciplinary approach to novel therapies in cardio-oncology research (MANTICORE 101-Breast): a randomized trial for the prevention of trastuzumab-associated cardiotoxicity. J Clin Oncol. 2017;35(8):870–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Flett AS, Hayward MP, Ashworth MT, Hansen MS, Taylor AM, Elliott PM, et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation. 2010;122(2):138–44.PubMedCrossRefGoogle Scholar
  42. 42.
    Neilan TG, Coelho-Filho OR, Shah RV, Feng JH, Pena-Herrera D, Mandry D, et al. Myocardial extracellular volume by cardiac magnetic resonance imaging in patients treated with anthracycline-based chemotherapy. Am J Cardiol. 2013;111(5):717–22.PubMedCrossRefGoogle Scholar
  43. 43.
    Nakano S, Takahashi M, Kimura F, Senoo T, Saeki T, Ueda S, et al. Cardiac magnetic resonance imaging-based myocardial strain study for evaluation of cardiotoxicity in breast cancer patients treated with trastuzumab: a pilot study to evaluate the feasibility of the method. Cardiol J. 2016;23(3):270–80.PubMedCrossRefGoogle Scholar
  44. 44.
    Wassmuth R, Lentzsch S, Erdbruegger U, Schulz-Menger J, Doerken B, Dietz R, et al. Subclinical cardiotoxic effects of anthracyclines as assessed by magnetic resonance imaging-a pilot study. Am Heart J. 2001;141(6):1007–13.PubMedCrossRefGoogle Scholar
  45. 45.
    Drafts BC, Twomley KM, D’Agostino R, Lawrence J, Avis N, Ellis LR, et al. Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc Imaging. 2013;6(8):877–85.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Chaosuwannakit N, D’Agostino R, Hamilton CA, Lane KS, Ntim WO, Lawrence J, et al. Aortic stiffness increases upon receipt of anthracycline chemotherapy. J Clin Oncol. 2010;28(1):166–72.PubMedCrossRefGoogle Scholar
  47. 47.
    • Armstrong GT, Plana JC, Zhang N, Srivastava D, Green DM, Ness KK, et al. Screening adult survivors of childhood cancer for cardiomyopathy: comparison of echocardiography and cardiac magnetic resonance imaging. J Clin Oncol. 2012;30(23):2876–84. MRI classified adult surviors of childhood cancer with LVEF < 50% better than echo. Google Scholar
  48. 48.
    Ylänen K, Poutanen T, Savikurki-Heikkilä P, Rinta-Kiikka I, Eerola A, Vettenranta K. Cardiac magnetic resonance imaging in the evaluation of the late effects of anthracyclines among long-term survivors of childhood cancer. J Am Coll Cardiol. 2013;61(14):1539–47.PubMedCrossRefGoogle Scholar
  49. 49.
    Neilan TG, Coelho-Filho OR, Pena-Herrera D, Shah RV, Jerosch-Herold M, Francis SA, et al. Left ventricular mass in patients with a cardiomyopathy after treatment with anthracyclines. Am J Cardiol. 2012;110(11):1679–86.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Heidenreich PA, Kapoor JR. Radiation induced heart disease: systemic disorders in heart disease. Heart. 2009;95(3):252–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Huang YJ, Harrison A, Sarkar V, Rassiah-Szegedi P, Zhao H, Szegedi M, et al. Detection of late radiation damage on left atrial fibrosis using cardiac late gadolinium enhancement magnetic resonance imaging. Adv Radiat Oncol. 2016;1(2):106–14.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Umezawa R, Ota H, Takanami K, Ichinose A, Matsushita H, Saito H, et al. MRI findings of radiation-induced myocardial damage in patients with oesophageal cancer. Clin Radiol. 2014;69(12):1273–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Zhuang XF, Yang YM, Sun XL, Liao ZK, Huang J. Late onset radiation-induced constrictive pericarditis and cardiomyopathy after radiotherapy: a case report. Medicine (Baltimore). 2017;96(5):e5932.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Poulin F, Semionov A, Roméo P, Demers P, Pressacco J, Basmadjian A. Extensive radiation-induced heart disease in an adult patient treated for lymphoma as a child. Can J Cardiol. 2011;27(3):390.e1–4.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Cardiovascular DivisionUniversity of MinnesotaMinneapolisUSA

Personalised recommendations