Advertisement

Current Radiology Reports

, 6:29 | Cite as

PET/CT and Bone Scintigraphy: Metabolic Results in Musculoskeletal Lesions

  • Rosj Gallicchio
  • Anna Nardelli
  • Piernicola Pedicini
  • Giuseppe Guglielmi
  • Giovanni Storto
Geriatrics (G Guglielmi, Section Editor)
  • 34 Downloads
Part of the following topical collections:
  1. Geriatrics

Abstract

Purpose

This review aimed to provide an overview on findings from metabolic imaging modalities such as bone scintigraphy and positron emission tomography–computed tomography (PET/CT) in musculoskeletal lesions. It is conceivable that methods assessing metabolism of bone tumors, combined with the morphological assessment, could enhance the possibility for a personalized therapy with particular emphasis to malignant neoplasms.

Recent Findings

The assessment of bone tumors by conventional scintigaphic and morphological imaging has been recently integrated with the morpho-metabolic appraisal obtained by PET/CT systems. Increasing availability of this diagnostic modality has been shown to stratify properly the patients and the findings correlate well with outcome. Moreover, new tracers are being implemented in the study of musculoskeletal lesions by PET/CT while the new volumetric parameters used to identify the lesions hold great promise.

Summary

Results from PET/CT are associated with tumor grading and histopathology in bone malignant lesions and they could be of value for implementing treatment strategy. Additionally, the metabolic assessment has been demonstrated useful for predicting surgical response and patients’ outcome.

Keywords

PET/CT Bone scintigraphy Musculoskeletal neoplasms Metabolic findings Diagnosis and follow-up 

Notes

Compliance with Ethical Guidelines

Conflict of interest

Rosj Gallicchio, Anna Nardelli, Piernicola Pedicini, and Giovanni Storto each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Recently published papers of particular interest have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–16.PubMedCrossRefGoogle Scholar
  2. 2.
    Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–473.PubMedCrossRefGoogle Scholar
  3. 3.
    Thrall JH. Technetium-99m labeled agents for skeletal imaging. CRC Crit Rev Clin Radiol Nucl Med. 1976;8:1–31.PubMedGoogle Scholar
  4. 4.
    Davis MA, Jones AG. Comparison of 99mTc-labeled phosphate and phosphonate agents for skeletal imaging. Semin Nucl Med. 1976;6:19–31.PubMedCrossRefGoogle Scholar
  5. 5.
    Hawkins RA, Choi Y, Huang SC, et al. Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J Nucl Med. 1992;33:633–42.PubMedGoogle Scholar
  6. 6.
    Raynor W, Houshmand S, Gholami S, Emamzadehfard S, Rajapakse CS, Blomberg BA, et al. Evolving Role of Molecular Imaging with (18)F-Sodium Fluoride PET as a Biomarker for Calcium Metabolism. Curr Osteoporos Rep. 2016;14(4):115–25.  https://doi.org/10.1007/s11914-016-0312-5.PubMedCrossRefGoogle Scholar
  7. 7.
    Hoh CK, Hawkins RA, Dahlbom M, Glaspy JA, Seeger LL, Choi Y, et al. Whole body skeletal imaging with [18F]fluoride ion and PET. J Comput Assist Tomogr. 1993;17:34–41.PubMedCrossRefGoogle Scholar
  8. 8.
    Grant FD. 18F-fluoride PET and PET/CT in children and young adults. PET Clin. 2014;9(3):287–97.  https://doi.org/10.1016/j.cpet.2014.03.004.PubMedCrossRefGoogle Scholar
  9. 9.
    Schirrmeister H, Guhlmann A, Elsner K, Kotzerke J, Glatting G, Rentschler M, et al. Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med. 1999;40:1623–9.PubMedGoogle Scholar
  10. 10.
    Schirrmeister H, Guhlmann A, Kotzerke J, Santjohanser C, Kühn T, Kreienberg R, et al. Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography. J Clin Oncol. 1999;17:2381–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Parghane RV, Basu S. Dual-time point 18F-FDG-PET and PET/CT for differentiating benign from malignant musculoskeletal lesions: opportunities and limitations. Semin Nucl Med. 2017;47(4):373–91.  https://doi.org/10.1053/j.semnuclmed.2017.02.009.PubMedCrossRefGoogle Scholar
  12. 12.
    Choi YY, Kim JY, Yang SO. PET/CT in benign and malignant musculoskeletal tumors and tumor-like conditions. Semin Musculoskelet Radiol. 2014;18(2):133–48.  https://doi.org/10.1055/s-0034-1371016.PubMedCrossRefGoogle Scholar
  13. 13.
    Horiuchi C, Taguchi T, Yoshida T, Nishimura G, Kawakami M, Tanigaki Y, et al. Early assessment of clinical response to concurrent chemoradiotherapy in head and neck carcinoma using fluoro-2-deoxy-d-glucose positron emission tomography. Auris Nasus Larynx. 2008;35:103–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Mac Manus MP, Hicks RJ, Matthews JP, McKenzie A, Rischin D, Salminen EK, et al. Positron emission tomography is superior to computed tomography scanning for response-assessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer. J Clin Oncol. 2003;21:1285–92.PubMedCrossRefGoogle Scholar
  15. 15.
    Sheikhbahaei S, Marcus C, Hafezi-Nejad N, Taghipour M, Subramaniam RM. PET Value of FDG PET/CT in patient management and outcome of skeletal and soft tissue sarcomas. PET Clin. 2015;10(3):375–93.  https://doi.org/10.1016/j.cpet.2015.03.003.PubMedCrossRefGoogle Scholar
  16. 16.
    Moore DD, Luu HH. Osteosarcoma. Cancer Treat Res. 2014;162:65–92.  https://doi.org/10.1007/978-3-319-07323-1_4.PubMedCrossRefGoogle Scholar
  17. 17.
    Krämer JA, Gübitz R, Beck L, Heindel W, Vieth V. Imaging diagnostics of bone sarcomas. Unfallchirurg. 2014;117(6):491–500.  https://doi.org/10.1007/s00113-013-2470-6.PubMedCrossRefGoogle Scholar
  18. 18.
    Nadel HR. Pediatric bone scintigraphy update. Semin Nucl Med. 2010;40(1):31–40.  https://doi.org/10.1053/j.semnuclmed.2009.10.001.PubMedCrossRefGoogle Scholar
  19. 19.
    Costelloe CM, Chuang HH, Madewell JE. FDG PET/CT of primary bone tumors. AJR Am J Roentgenol. 2014;202(6):521–31.  https://doi.org/10.2214/AJR.13.11833.CrossRefGoogle Scholar
  20. 20.
    Hurley C, McCarville MB, Shulkin BL, Mao S, Wu J, Navid F, et al. Comparison of (18) F-FDG-PET-CT and bone scintigraphy for evaluation of osseous metastases in newly diagnosed and recurrent osteosarcoma. Pediatr Blood Cancer. 2016;63(8):1381–6.  https://doi.org/10.1002/pbc.26014.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Rakheja R, Makis W, Skamene S, Nahal A, Brimo F, Azoulay L, et al. Correlating metabolic activity on 18F-FDG PET/CT with histopathologic characteristics of osseous and soft-tissue sarcomas: a retrospective review of 136 patients. AJR Am J Roentgenol. 2012;198(6):1409–16.  https://doi.org/10.2214/AJR.11.7560.PubMedCrossRefGoogle Scholar
  22. 22.
    Harrison DJ, Parisi MT, Shulkin BL. The role of 18F-FDG-PET/CT in pediatric sarcoma. Semin Nucl Med. 2017;47(3):229–41.  https://doi.org/10.1053/j.semnuclmed.2016.12.004.PubMedCrossRefGoogle Scholar
  23. 23.
    • Kubo T, Furuta T, Johan MP, Ochi M. Prognostic significance of (18)F-FDG PET at diagnosis in patients with soft tissue sarcoma and bone sarcoma; systematic review and meta-analysis. Eur J Cancer. 2016;58:104-11.  https://doi.org/10.1016/j.ejca.2016.02.007. This paper highlights the value of SUV max in predicting the histo-pathologic response and survival after neoadjuvant therapy.
  24. 24.
    Quartuccio N, Fox J, Kuk D, Wexler LH, Baldari S, Cistaro A, et al. Pediatric bone sarcoma: diagnostic performance of 18F-FDG PET/CT versus conventional imaging for initial staging and follow-up. AJR Am J Roentgenol. 2015;204(1):153–60.  https://doi.org/10.2214/AJR.14.12932.PubMedCrossRefGoogle Scholar
  25. 25.
    Palmerini E, Colangeli M, Nanni C, Fanti S, Marchesi E, Paioli A, et al. The role of FDG PET/CT in patients treated with neoadjuvant chemotherapy for localized bone sarcomas. Eur J Nucl Med Mol Imaging. 2017;44(2):215–23.  https://doi.org/10.1007/s00259-016-3509-z.PubMedCrossRefGoogle Scholar
  26. 26.
    Esiashvili N, Goodman M, Marcus RB Jr. Changes in incidence and survival of Ewing sarcoma patients over the past 3 decades: surveillance Epidemiology and End Results data. J Pediatr Hematol Oncol. 2008;30:425–30.PubMedCrossRefGoogle Scholar
  27. 27.
    McCarville MB, Christie R, Daw NC, Spunt SL, Kaste SC. PET/CT in the evaluation of childhood sarcomas. AJR Am J Roentgenol. 2005;184:1293–304.PubMedCrossRefGoogle Scholar
  28. 28.
    Lee J, Hoang BH, Ziogas A, Zell JA. Analysis of prognostic factors in Ewing sarcoma using a population-based cancer registry. Cancer. 2010;116:1964–73.PubMedCrossRefGoogle Scholar
  29. 29.
    Garcia JR, Castañeda A, Morales La Madrid A, Bassa P, Soler M, Riera E. Staging and follow-up of a Ewing sarcoma patient using 18F-FDG PET/CT. Rev Esp Med Nucl Imagen Mol. 2017;26(17):30133–6.  https://doi.org/10.1016/j.remn.2017.09.001.CrossRefGoogle Scholar
  30. 30.
    • Kasalak Ö, Glaudemans AWJM, Overbosch J, Jutte PC, Kwee TC. Can FDG-PET/CT replace blind bone marrow biopsy of the posterior iliac crest in Ewing sarcoma? Skeletal Radiol. 2017;9.  https://doi.org/10.1007/s00256-017-2807-2. This paper empathizes the importance of PET/CT in replacing bone biopsy when a comprehensive approach is necessary.
  31. 31.
    Hwang JP, Lim I, Kong CB, Jeon DG, Byun BH, Kim BI, et al. Prognostic Value of SUVmax Measured by Pretreatment Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Patients with Ewing Sarcoma. PLoS ONE. 2016;11(4):e0153281.  https://doi.org/10.1371/journal.pone.0153281.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Salem U, Amini B, Chuang HH, Daw NC, Wei W, Haygood TM, et al. 18F-FDG PET/CT as an indicator of survival in Ewing sarcoma of bone. J Cancer. 2017;8(15):2892–8.  https://doi.org/10.7150/jca.20077 eCollection 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Amet B, Carlier T, Campion L, Bompas E, Girault S, Borrely F, et al. Initial FDG-PET/CT predicts survival in adults Ewing sarcoma family of tumors. Oncotarget. 2017;8(44):77050–60.  https://doi.org/10.18632/oncotarget.20335.CrossRefGoogle Scholar
  34. 34.
    Charest M, Hickeson M, Lisbona R, Novales-Diaz JA, Derbekyan V, Turcotte RE. FDG PET/CT imaging in primary osseous and soft tissue sarcomas: a retrospective review of 212 cases. Eur J Nucl Med Mol Imaging. 2009;36(12):1944–51.  https://doi.org/10.1007/s00259-009-1203-0.PubMedCrossRefGoogle Scholar
  35. 35.
    Feldman F, Van Heertum R, Saxena C, Parisien M. 18FDG-PET applications for cartilage neoplasms. Skeletal Radiol. 2005;34(7):367–74.  https://doi.org/10.1007/s00256-005-0894-y.PubMedCrossRefGoogle Scholar
  36. 36.
    • Jesus-Garcia R, Osawa A, Filippi RZ, Viola DC, Korukian M, de Carvalho Campos Neto G, et al. Is PET-CT an accurate method for the differential diagnosis between chondroma and chondrosarcoma? Springerplus. 201629;5:236.  https://doi.org/10.1186/s40064-016-1782-8. eCollection 2016. This manuscript endorses the value of the parameter SUVmax as it correlates with the tumor grade.
  37. 37.
    Brenner W, Conrad EU, Eary JF. FDG PET imaging for grading and prediction of outcome in chondrosarcoma patients. Eur J Nucl Med Mol Imaging. 2004;31(2):189–95.  https://doi.org/10.1007/s00259-003-1353-4.PubMedCrossRefGoogle Scholar
  38. 38.
    McMaster ML, Goldstein AM, Bromley CM, Ishibe N, Parry DM. Chordoma: incidence and survival patterns in the United States, 1973–1995. Cancer Causes Control. 2001;12(1):1–11.PubMedCrossRefGoogle Scholar
  39. 39.
    Miyazawa N, Ishigame K, Kato S, Satoh Y, Shinohara T. Thoracic chordoma: review and role of FDG-PET. J Neurosurg Sci. 2008;52(4):117–21.PubMedGoogle Scholar
  40. 40.
    Park SA, Kim HS. F-18 FDG PET/CT evaluation of sacrococcygeal chordoma. Clin Nucl Med. 2008;33(12):906–8.  https://doi.org/10.1097/RLU.0b013e31818c4e88.PubMedCrossRefGoogle Scholar
  41. 41.
    Ochoa-Figueroa MA, Martínez-Gimeno E, Allende-Riera A, Cabello-García D, Muñoz-Iglesias J, Cárdenas-Negro C. Role of 18F-FDG PET-CT in the study of sacrococcygeal chordoma. Rev Esp Med Nucl Imagen Mol. 2012;31(6):359–61.  https://doi.org/10.1016/j.remn.2011.11.001.PubMedCrossRefGoogle Scholar
  42. 42.
    Mammar H, Kerrou K, Nataf V, Pontvert D, Clemenceau S, Lot G, et al. Positron emission tomography/computed tomography imaging of residual skull base chordoma before radiotherapy using fluoromisonidazole and fluorodeoxyglucose: potential consequences for dose painting. Int J Radiat Oncol Biol Phys. 2012;84(3):681–7.  https://doi.org/10.1016/j.ijrobp.2011.12.047.PubMedCrossRefGoogle Scholar
  43. 43.
    Frassica FJ, Sanjay BK, Unni KK, McLeod RA, Sim FH. Benign giant cell tumor. Orthopedics. 1993;16(10):1179–83.PubMedGoogle Scholar
  44. 44.
    Wülling M, Delling G, Kaiser E. The origin of the neoplastic stromal cell in giant cell tumor of bone. Hum Pathol. 2003;34(10):983–93.PubMedCrossRefGoogle Scholar
  45. 45.
    Oueriagli SN, Ghfir I, Guerrouj HE, Raïs NB. What role for radiobiphosphonates bone scintigraphy in the monitoring of an unusual bone giant cell tumor: a case report and literature review. Am J Nucl Med Mol Imaging. 2016;6(2):128–34.PubMedPubMedCentralGoogle Scholar
  46. 46.
    O’Connor W, Quintana M, Smith S, Willis M, Renner J. The hypermetabolic giant: 18F-FDG avid giant cell tumor identified on PET-CT. J Radiol Case Rep. 2014;8(6):27–38.  https://doi.org/10.3941/jrcr.v8i6.1328.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Park HJ, Kwon SY, Cho SG, Kim J, Song HC, Kim SS, et al. Giant Cell tumor with secondary aneurysmal bone cyst shows heterogeneous metabolic pattern on 18F-FDG PET/CT: a Case Report. Nucl Med Mol Imaging. 2016;50(4):348–52.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    •• Boye K, Jebsen NL, Zaikova O, Knobel H, Løndalen AM, Trovik CS, et al. Denosumab in patients with giant-cell tumor of bone in Norway: results from a nationwide cohort. Acta Oncol. 2017;56(3):479–83.  https://doi.org/10.1080/0284186x.2016.1278305. The paper is important since it supports the role of metabolic imaging in the assessment of early response to treatment with denosumab.
  49. 49.
    Berlin O, Angervall L, Kindblom LG, Berlin IC, Stener B. Primary leiomyosarcoma of bone. A clinical, radiographic, pathologic-anatomic, and prognostic study of 16 cases. Skeletal Radiol. 1987;16(5):364–76.PubMedCrossRefGoogle Scholar
  50. 50.
    Rubin BP, Fletcher CDM. Myxoid leiomyosarcoma of soft tissue, an under recognized variant. Am J of Surg Pathol. 2000;24(7):927–36.CrossRefGoogle Scholar
  51. 51.
    Hicks RJ, Toner GC, Choong PF. Clinical applications of molecular imaging in sarcoma evaluation. Cancer Imaging. 2005;5(1):66–72.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Punt SE, Eary JF, O’Sullivan J, Conrad EU. Fluorodeoxyglucose positron emission tomography in leiomyosarcoma: imaging characteristics. Nucl Med Commun. 2009;30(7):546–9.  https://doi.org/10.1097/MNM.0b013e32832bcaec.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Sultan I, Qaddoumi I, Yaser S, Rodriguez-Galindo C, Ferrari A. Comparing adult and pediatric rhabdomyosarcoma in the surveillance, epidemiology and end results program, 1973 to 2005: an analysis of 2,600 patients. J Clin Oncol. 2009;27:3391–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Kashi VP, Hatley ME, Galindo RL. Probing for a deeper understanding of rhabdomyosarcoma: insights from complementary model systems Nat Rev Cancer. 2015;15(7):426–39.  https://doi.org/10.1038/nrc3961.PubMedCrossRefGoogle Scholar
  55. 55.
    Iagaru A, Goris ML. Rhabdomyosarcoma diffusely metastatic to the bone marrow: suspicious findings on 99mTc-MDP bone scintigraphy confirmed by (18)F-18 FDG PET/CT and bone marrow biopsy. Eur J Nucl Med Mol Imaging. 2008;35(9):1746.  https://doi.org/10.1007/s00259-008-0864-4.PubMedCrossRefGoogle Scholar
  56. 56.
    Tateishi U, Hosono A, Makimoto A, Nakamoto Y, Kaneta T, Fukuda H, et al. Comparative study of FDG PET/CT and conventional imaging in the staging of rhabdomyosarcoma. Ann Nucl Med. 2009;23(2):155–61.  https://doi.org/10.1007/s12149-008-0219-z.PubMedCrossRefGoogle Scholar
  57. 57.
    • Dong Y, Zhang X, Wang S, Chen S, Ma C. 18F-FDG PET/CT is useful in initial staging, restaging for pediatric rhabdomyosarcoma. Q J Nucl Med Mol Imaging. 2017;61(4):438–46.  https://doi.org/10.23736/s1824-4785.17.02792-3. The manuscript report on the value of PET/CT as a valuable tool for determining correctly the M stage.
  58. 58.
    Ricard F, Cimarelli S, Deshayes E, Mognetti T, Thiesse P, Giammarile F. Additional Benefit of F-18 FDG PET/CT in the staging and follow-up of pediatric rhabdomyosarcoma. Clin Nucl Med. 2011;36(8):672–7.  https://doi.org/10.1097/RLU.0b013e318217ae2e.PubMedCrossRefGoogle Scholar
  59. 59.
    Baum SH, Frühwald M, Rahbar K, Wessling J, Schober O, Weckesser M. Contribution of PET/CT to prediction of outcome in children and young adults with rhabdomyosarcoma. J Nucl Med. 2011;52(10):1535–40.  https://doi.org/10.2967/jnumed.110.082511.PubMedCrossRefGoogle Scholar
  60. 60.
    Nose H, Otsuka H, Otomi Y, Terazawa K, Takao S, Iwamoto S, et al. Correlations between F-18 FDG PET/CT and pathological findings in soft tissue lesions. J Med Invest. 2013;60(3–4):184–90.PubMedCrossRefGoogle Scholar
  61. 61.
    Hoshi M, Oebisu N, Takada J, Wakasa K, Nakamura H. A case of dedifferentiated liposarcoma showing a biphasic pattern on 2-deoxy-2-f(18)-fluoro-d-glucose positron emission tomography/computed tomography. Rare Tumors. 2013;5(2):95–7.  https://doi.org/10.4081/rt.2013.e26.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Brenner W, Eary JF, Hwang W, Vernon C, Conrad EU. Risk assessment in liposarcoma patients based on FDG PET imaging. Eur J Nucl Med Mol Imaging. 2006;33(11):1290–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Yang J, Codreanu I, Servaes S, Zhuang H. Earlier detection of bone metastases from pleomorphic liposarcoma in a pediatric patient by FDG PET/CT than planar 99mTc MDP bone scan. Clin Nucl Med. 2012;37(5):e104–7.  https://doi.org/10.1097/RLU.0b013e3182478da8.PubMedCrossRefGoogle Scholar
  64. 64.
    Yamamoto H, Sugimoto S, Miyoshi K, Yamamoto H, Soh J, Yamane M, et al. The role of 18F-fluorodeoxyglucose (FDG)-positron emission tomography/computed tomography (PET/CT) in liposarcoma of the chest wall. Kyobu Geka. 2014;67(1):4–8.PubMedGoogle Scholar
  65. 65.
    Brenner W, Eary JF, Hwang W, Vernon C, Conrad EU. Risk assessment in liposarcoma patients based on FDG PET imaging. Eur J Nucl Med Mol Imaging. 2006;33(11):1290–5.PubMedCrossRefGoogle Scholar
  66. 66.
    Xarchas KC, Kyriakopoulos G, Manthas S, Oikonomou L. Hallux osteoid osteoma: a case report and literature review. Open Orthop J. 2017;11:1066–72.  https://doi.org/10.2174/1874325001711011066.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Xarchas G, Abril JC, Mediero IG, Epeldegui T. Osteoid osteoma with a multicentric nidus. Int Orthop. 1996;20(1):61–3.CrossRefGoogle Scholar
  68. 68.
    Sproule JA, Khan F, Fogarty EE. Osteoid osteoma: painful enlargement of the second toe. Arch Orthop Trauma Surg. 2004;124(5):354–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Laurence N, Epelman M, Markowitz RI, Jaimes C, Jaramillo D, Chauvin NA. Osteoid osteomas: a pain in the night diagnosis. Pediatr Radiol. 2012;42(12):1490–501.  https://doi.org/10.1007/s00247-012-2495-y.PubMedCrossRefGoogle Scholar
  70. 70.
    Sharma P, Mukherjee A, Karunanithi S, Nadarajah J, Gamanagatti S, Khan SA, et al. 99mTc-Methylene diphosphonate SPECT/CT as the one-stop imaging modality for the diagnosis of osteoid osteoma. Nucl Med Commun. 2014;35(8):876–83.  https://doi.org/10.1097/MNM.0000000000000134.PubMedCrossRefGoogle Scholar
  71. 71.
    Infante JR, Lorente R, Rayo JI, Serrano J, Domínguez ML, García L, et al. Use of radioguided surgery in the surgical treatment of osteoid osteoma. Rev Esp Med Nucl Imagen Mol. 2015;34(4):225–9.  https://doi.org/10.1016/j.remn.2015.01.003.PubMedCrossRefGoogle Scholar
  72. 72.
    Imperiale A, Moser T, Ben-Sellem D, Mertz L, Gangi A, Constantinesco A. Osteoblastoma and osteoid osteoma: morphofunctional characterization by MRI and dynamic F-18 FDG PET/CT before and after radiofrequency ablation. Clin Nucl Med. 2009;34(3):184–8.  https://doi.org/10.1097/RLU.0b013e3181966de6.PubMedCrossRefGoogle Scholar
  73. 73.
    Lucas DR, Unni KK, McLeod RA, O’Connor MI, Sim FH. Osteoblastoma: clinicopathologic study of 306 cases. Hum Pathol. 1994;25(2):117–34.PubMedCrossRefGoogle Scholar
  74. 74.
    Papagelopoulos PJ, Galanis EC, Sim FH, Unni KK. Clinicopathologic features, diagnosis, and treatment of osteoblastoma. Orthopedics. 1999;22(2):244–7.PubMedGoogle Scholar
  75. 75.
    Birchall JD, Blackband K, Freeman BJ, Ganatra RH, O’Leary M, Perkins AC. Precise localisation of osteoblastoma with SPET/CT. Eur J Nucl Med Mol Imaging. 2004;31(2):308.PubMedCrossRefGoogle Scholar
  76. 76.
    Jeong YJ, Sohn MH, Lim ST, Kim DW, Jeong HJ, Jang KY, et al. Osteoblastoma in the nasal cavity: F-18 FDG PET/CT and Tc-99m MDP 3-phase bone scan findings with pathologic correlation. Clin Nucl Med. 2011;36(3):214–7.  https://doi.org/10.1097/RLU.0b013e318208f2f9.PubMedCrossRefGoogle Scholar
  77. 77.
    Al-Muqbel KM, Al-Omari MH, Audat ZA, Alqudah MA. Osteoblastoma is a metabolically active benign bone tumor on 18F-FDG PET imaging. J Nucl Med Technol. 2013;41(4):308–10.  https://doi.org/10.2967/jnmt.113.127332.PubMedCrossRefGoogle Scholar
  78. 78.
    Giudici MA, Moser RJ, Kransdorf MJ. Cartilaginous bone tumors. Radiol Clin N. Am. 1993;31(2):237–59.PubMedGoogle Scholar
  79. 79.
    Mavrogenis AF, Papagelopoulos PJ, Soucacos PN. Skeletal osteochondromas revisited. Orthopedics. 2008;31(10):1018–28.CrossRefGoogle Scholar
  80. 80.
    Kobayashi H, Kotoura Y, Hosono M, Sakahara H, Hosono M, Yao ZS, et al. Diagnostic value of Tc-99m (V) DMSA for chondrogenic tumors with positive Tc-99m HMDP uptake on bone scintigraphy. Clin Nucl Med. 1995;20(4):361–4.PubMedCrossRefGoogle Scholar
  81. 81.
    Staals EL, Bacchini P, Mercuri M, Bertoni F. Dedifferentiated chondrosarcomas arising in preexisting osteochondromas. J Bone Joint Surg Am. 2007;89(5):987–93.PubMedCrossRefGoogle Scholar
  82. 82.
    Ishibashi M, Tanabe Y, Fujii S, Ogawa T. Pictorial review of 18F-FDG PET/CT findings in musculoskeletal lesions. Ann Nucl Med. 2017;31(6):437–53.  https://doi.org/10.1007/s12149-017-1182-3.PubMedCrossRefGoogle Scholar
  83. 83.
    Pansuriya TC, Kroon HM, Bovée JV. Enchondromatosis: insights on the different subtypes. Int J Clin Exp Pathol. 2010;3:557–69.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Douis H, Saifuddin A. The imaging of cartilaginous bone tumours. I. Benign lesions. Skeletal Radiol. 2012;41(10):1195–212.  https://doi.org/10.1007/s00256-012-1427-0.PubMedCrossRefGoogle Scholar
  85. 85.
    Le BB, Nguyen BD. Ollier disease with digital enchondromatosis: anatomic and functional imaging. Clin Nucl Med. 2014;39(8):375–8.  https://doi.org/10.1097/RLU.0000000000000284.CrossRefGoogle Scholar
  86. 86.
    Satter EK, High WA. Langerhans cell histiocytosis: a case report and summary of the current recommendations of the Histiocyte Society. Dermatol Online J. 2008;14(3):3.PubMedGoogle Scholar
  87. 87.
    Salotti JA, Nanduri V, Pearce MS, Parker L, Lynn R, Windebank KP. Incidence and clinical features of Langerhans cell histiocytosis in the UK and Ireland. Arch Dis Child. 2009;94(5):376–80.  https://doi.org/10.1136/adc.2008.144527.PubMedCrossRefGoogle Scholar
  88. 88.
    Haupt R, Minkov M, Astigarraga I, Schäfer E, Nanduri V, Jubran R, et al. Langerhans cell histiocytosis (LCH): guidelines for diagnosis, clinical work-up, and treatment for patients till the age of 18 years. Pediatr Blood Cancer. 2013;60(2):175–84.  https://doi.org/10.1002/pbc.24367.PubMedCrossRefGoogle Scholar
  89. 89.
    Satter EK, High WA. Langerhans cell histiocytosis: a review of the current recommendations of the Histiocyte Society. Pediatr Dermatol. 2008;25(3):291–5.  https://doi.org/10.1111/j.1525-1470.2008.00669.x.PubMedCrossRefGoogle Scholar
  90. 90.
    Goo HW, Yang DH, Ra YS, Song JS, Im HJ, Seo JJ, et al. Whole-body MRI of Langerhans cell histiocytosis: comparison with radiography and bone scintigraphy. Pediatr Radiol. 2006;36:1019–31.  https://doi.org/10.1007/s00247-006-0246-7.PubMedCrossRefGoogle Scholar
  91. 91.
    Obert J, Vercellino L, Van Der Gucht A, de Margerie-Mellon C, Bugnet E, Chevret S, et al. 18F-fluorodeoxyglucose positron emission tomography-computed tomography in the management of adult multisystem Langerhans cell histiocytosis. Eur J Nucl Med Mol Imaging. 2017;44(4):598–610.  https://doi.org/10.1007/s00259-016-3521-3.PubMedCrossRefGoogle Scholar
  92. 92.
    Monsereenusorn C, Rodriguez-Galindo C. Clinical Characteristics and Treatment of Langerhans Cell Histiocytosis. Hematol Oncol Clin North Am. 2015;29(5):853–73.  https://doi.org/10.1016/j.hoc.2015.06.005.PubMedCrossRefGoogle Scholar
  93. 93.
    Wieder HA, Pomykala KL, Benz MR, Buck AK, Herrmann K. PET tracers in musculoskeletal disease beyond FDG. Semin Musculoskelet Radiol. 2014;18(2):123–32.  https://doi.org/10.1055/s-0034-1371015.PubMedCrossRefGoogle Scholar
  94. 94.
    Jager PL, Vaalburg W, Pruim J, De Vries EGE, Langen KJ, Piers DA. Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med. 2001;42(3):432–45.PubMedGoogle Scholar
  95. 95.
    Hara T, Inagaki K, Kosaka N, Morita T. Sensitive detection of mediastinal lymph node metastasis of lung cancer with 11C-choline PET. J Nucl Med. 2000;41(9):1507–13.PubMedGoogle Scholar
  96. 96.
    Lapa P, Marques M, Costa G, Iagaru A, Pedroso de Lima J. Assessment of skeletal tumour burden on 18F-NaF PET/CT using a new quantitative method. Nucl Med Commun. 2017;38(4):325–32.  https://doi.org/10.1097/MNM.0000000000000654.PubMedCrossRefGoogle Scholar
  97. 97.
    Buck AK, Herrmann K, Büschenfelde CM, Juweid ME, Bischoff M, Glatting G, et al. Imaging bone and soft tissue tumors with the proliferation marker [18F]fluorodeoxythymidine. Clin Cancer Res. 2008;14(10):2970–7.  https://doi.org/10.1158/1078-0432.CCR-07-4294.PubMedCrossRefGoogle Scholar
  98. 98.
    Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL, et al. Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin alpha(v)beta3 expression in man. Clin Cancer Res. 2006;12(13):3942–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Li YJ, Dai YL, Cheng YS, Zhang WB, Tu CQ. Positron emission tomography (18)F-fluorodeoxyglucose uptake and prognosis in patients with bone and soft tissue sarcoma: a meta-analysis. Eur J Surg Oncol. 2016;42(8):1103–14.  https://doi.org/10.1016/j.ejso.2016.04.056.PubMedCrossRefGoogle Scholar
  100. 100.
    Andersen KF, Fuglo HM, Rasmussen SH, Petersen MM, Loft A. Volume-Based F-18 FDG PET/CT Imaging Markers Provide Supplemental Prognostic Information to Histologic Grading in Patients With High-Grade Bone or Soft Tissue Sarcoma. Medicine (Baltimore). 2015;94(51):e2319.  https://doi.org/10.1097/MD.0000000000002319.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rosj Gallicchio
    • 1
  • Anna Nardelli
    • 2
  • Piernicola Pedicini
    • 1
  • Giuseppe Guglielmi
    • 3
  • Giovanni Storto
    • 1
  1. 1.Medicina Nucleare, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)Centro di Riferimento Oncologico della Basilicata (CROB)Rionero in VultureItaly
  2. 2.Istituto di Biostrutture e BioimmaginiConsiglio Nazionale delle Ricerche (CNR)NaplesItaly
  3. 3.Dipartimento di RadiologiaUniversità di FoggiaFoggiaItaly

Personalised recommendations