Reflexive-nilpotents-property skewed by ring endomorphisms

  • Arnab BhattacharjeeEmail author
Open Access


The reflexive property for rings was introduced by Mason and play roles in noncommutative ring theory. A ring R is called reflexive if for \(a, b \in R\), \(aRb = 0\) implies \(bRa = 0\). Recently, Kheradmand et al. introduced the notion of RNP (reflexive-nilpotents-property) rings by restricting the reflexive property to nilpotent elements. In this article, we study reflexive-nilpotents-property skewed by a ring endomorphism \(\alpha \) and introduce the notion of \(\alpha \)-skew RNP rings. We investigate various properties and extensions of these rings and also determine the structure of minimal noncommutative \(\alpha \)-skew RNP rings.

Mathematics Subject Classification

16U99 16W20 16N40 



  1. 1.
    Alhevaz, A.; Moussavi, A.: Annihilator conditions in matrix and skew polynomial rings. J. Algebra Appl. 11(4), 1250079 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Annin, S.: Associated primes over skew polynomial rings. Comm. Algebra 30(5), 2511–2528 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baek, J.; Chin, W.; Choi, J.; Eom, T.; Jeon, Y.C.; Lee, Y.: Insertion-of-factors-property on nilpotent elements. Bull. Korean Math. Soc. 49(2), 381–394 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bhattacharjee, A.; Chakraborty, U.S.: On properties related to reflexive rings (preprint) Google Scholar
  5. 5.
    Dorroh, J.L.: Concerning adjunctions to algebras. Bull. Am. Math. Soc. 38(2), 85–88 (1932)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Eldridge, K.E.: Orders for finite noncommutative rings with unity. Am. Math. Monthly 75(5), 512–514 (1968)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hirano, Y.: On annihilator ideals of a polynomial ring over a noncommutative ring. J. Pure Appl. Algebra 168, 45–52 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hong, C.Y.; Kim, N.K.; Kwak, T.K.: Ore extensions of Baer and p.p.-rings. J. Pure Appl. Algebra 151(3), 215–226 (2000)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hwang, S.U.; Jeon, Y.C.; Lee, Y.: Structure and topological conditions of NI rings. J. Algebra 302, 186–199 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kheradmand, M.; Khabazian, H.; Kwak, T.K.; Lee, Y.: Reflexive property restricted to nilpotents. J. Algebra Appl. 16(2), 1750044 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kim, N.K.; Kwak, T.K.; Lee, Y.: Insertion-of-factors-property skewed by ring endomorphisms. Taiwan. J. Math. 18(3), 849–869 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Krempa, J.: Some examples of reduced rings. Algebra Colloq. 3, 289–300 (1996)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Kwak, T.K.; Lee, Y.: Rings over which coefficients of nilpotent polynomials are nilpotent. Int. J. Algebra Comput. 21(5), 745–762 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kwak, T.K.; Lee, Y.; Yun, S.J.: Reflexive property skewed by ring endomorphisms. Korean J. Math. 22(2), 217–234 (2014)CrossRefGoogle Scholar
  15. 15.
    Marks, G.: On 2-primal Ore extensions. Comm. Algebra 29(5), 2113–2123 (2001)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Mason, G.: Reflexive ideals. Comm. Algebra 9(17), 1709–1724 (1981)MathSciNetCrossRefGoogle Scholar
  17. 17.
    McConnell, J.C.; Robson, J.C.: Noncommutative Noetherian Rings, 2nd edn. Amer. Math. Soc, Providence (2001)zbMATHGoogle Scholar
  18. 18.
    Rege, M.B.; Chhawchharia, S.: Armendariz rings. Proc. Jpn. Acad. Ser. A Math. Sci 73, 14–17 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of MathematicsAssam UniversitySilcharIndia

Personalised recommendations