Advertisement

Reflexive-nilpotents-property skewed by ring endomorphisms

  • Arnab BhattacharjeeEmail author
Open Access
Article
  • 34 Downloads

Abstract

The reflexive property for rings was introduced by Mason and play roles in noncommutative ring theory. A ring R is called reflexive if for \(a, b \in R\), \(aRb = 0\) implies \(bRa = 0\). Recently, Kheradmand et al. introduced the notion of RNP (reflexive-nilpotents-property) rings by restricting the reflexive property to nilpotent elements. In this article, we study reflexive-nilpotents-property skewed by a ring endomorphism \(\alpha \) and introduce the notion of \(\alpha \)-skew RNP rings. We investigate various properties and extensions of these rings and also determine the structure of minimal noncommutative \(\alpha \)-skew RNP rings.

Mathematics Subject Classification

16U99 16W20 16N40 

Notes

References

  1. 1.
    Alhevaz, A.; Moussavi, A.: Annihilator conditions in matrix and skew polynomial rings. J. Algebra Appl. 11(4), 1250079 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Annin, S.: Associated primes over skew polynomial rings. Comm. Algebra 30(5), 2511–2528 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baek, J.; Chin, W.; Choi, J.; Eom, T.; Jeon, Y.C.; Lee, Y.: Insertion-of-factors-property on nilpotent elements. Bull. Korean Math. Soc. 49(2), 381–394 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bhattacharjee, A.; Chakraborty, U.S.: On properties related to reflexive rings (preprint) Google Scholar
  5. 5.
    Dorroh, J.L.: Concerning adjunctions to algebras. Bull. Am. Math. Soc. 38(2), 85–88 (1932)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Eldridge, K.E.: Orders for finite noncommutative rings with unity. Am. Math. Monthly 75(5), 512–514 (1968)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hirano, Y.: On annihilator ideals of a polynomial ring over a noncommutative ring. J. Pure Appl. Algebra 168, 45–52 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hong, C.Y.; Kim, N.K.; Kwak, T.K.: Ore extensions of Baer and p.p.-rings. J. Pure Appl. Algebra 151(3), 215–226 (2000)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hwang, S.U.; Jeon, Y.C.; Lee, Y.: Structure and topological conditions of NI rings. J. Algebra 302, 186–199 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kheradmand, M.; Khabazian, H.; Kwak, T.K.; Lee, Y.: Reflexive property restricted to nilpotents. J. Algebra Appl. 16(2), 1750044 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kim, N.K.; Kwak, T.K.; Lee, Y.: Insertion-of-factors-property skewed by ring endomorphisms. Taiwan. J. Math. 18(3), 849–869 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Krempa, J.: Some examples of reduced rings. Algebra Colloq. 3, 289–300 (1996)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Kwak, T.K.; Lee, Y.: Rings over which coefficients of nilpotent polynomials are nilpotent. Int. J. Algebra Comput. 21(5), 745–762 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kwak, T.K.; Lee, Y.; Yun, S.J.: Reflexive property skewed by ring endomorphisms. Korean J. Math. 22(2), 217–234 (2014)CrossRefGoogle Scholar
  15. 15.
    Marks, G.: On 2-primal Ore extensions. Comm. Algebra 29(5), 2113–2123 (2001)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Mason, G.: Reflexive ideals. Comm. Algebra 9(17), 1709–1724 (1981)MathSciNetCrossRefGoogle Scholar
  17. 17.
    McConnell, J.C.; Robson, J.C.: Noncommutative Noetherian Rings, 2nd edn. Amer. Math. Soc, Providence (2001)zbMATHGoogle Scholar
  18. 18.
    Rege, M.B.; Chhawchharia, S.: Armendariz rings. Proc. Jpn. Acad. Ser. A Math. Sci 73, 14–17 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of MathematicsAssam UniversitySilcharIndia

Personalised recommendations