Arabian Journal of Mathematics

, Volume 8, Issue 2, pp 133–151 | Cite as

On coupled nonlinear Schrödinger systems

  • T. SaanouniEmail author
Open Access


A class of coupled Schrödinger equations is investigated. First, in the stationary case, the existence of ground states is obtained and a sharp Gagliardo–Nirenberg inequality is discussed. Second, in the energy critical radial case, global well-posedness and scattering for small data are proved.

Mathematics Subject Classification




  1. 1.
    Adams, R.: Sobolev Spaces. Academic, New York (1975)zbMATHGoogle Scholar
  2. 2.
    Akhmediev, N.; Ankiewicz, A.: Partially coherent solitons on a finite background. Phys. Rev. Lett. 82, 2661 (1999)CrossRefGoogle Scholar
  3. 3.
    Cassano, B.; Tarulli, M.: \(H^s\) -scattering for systems of N -defocusing weakly coupled NLS equations in low space dimensions. J. Math. Anal. Appl. 430, 528–548 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cazenave, T.: An Introduction to Nonlinear Schrödinger Equations, Textos de Métodos Matemáticos, vol. 26, Instituto de Matemática UFRJ (1996)Google Scholar
  5. 5.
    Chakravarty, S.; Ablowitz, M.J.; Sauer, J.R.; Jenkins, R.B.: Multisoliton interactions and wavelength-division multiplexing. Opt. Lett. 20, 136–138 (1995)CrossRefGoogle Scholar
  6. 6.
    Christ, M.; Weinstein, M.: Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation. J. Funct. Anal. 100, 87–109 (1991)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dalfovo, F.; Giorgini, S.; Pitaevskii, L.P.; Stringari, S.: Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)CrossRefGoogle Scholar
  8. 8.
    Frank, R.L.; Seiringer, R.: Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255, 3407–3430 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Guo, B.; Han, Y.; Xin, J.: Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation. Appl. Math. Comput. 204(1), 468–477 (2008)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Guo, B.; Huang, D.: Existence and stability of standing waves for nonlinear fractional Schrödinger equations. J. Math. Phys. 53, 083702 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Guo, B.; Huo, Z.: Global well-posedness for the fractional nonlinear Schrödinger equation. Commun. Partial Differ. Equ. 36(2), 247–255 (2010)CrossRefGoogle Scholar
  12. 12.
    Guo, B.; Huo, Z.: Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg-Landau equation. Fract. Calc. Appl. Anal. 16(1), 226–242 (2013)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Guo, Z.; Sire, Y.; Wang, Y.; Zhao, L.: On the energy-critical fractional Schrödinger equation in the radial case (2013). arXiv:1310.6816v1 [math.AP]
  14. 14.
    Guo, Z.; Wang, Y.: Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations. J. Anal. Math. 124(1), 1–38 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ibrahim, R.W.; Jalab, H.A.: Analytic and numerical solutions for systems of fractional Schrödinger equation. J. Inequal. Appl. 2015, 23 (2015). CrossRefzbMATHGoogle Scholar
  16. 16.
    Kawaguchi, Y.; Ueda, M.: Spinor Bose–Einstein condensates. Phys. Rep. 520, 253–381 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. 268 A, 298–304 (2000)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E66, 056108 (2002)MathSciNetGoogle Scholar
  19. 19.
    Le Coz, S.: Standing waves in nonlinear Schrödinger equations. In: Analytical and Numerical Aspects of Partial Differential Equations, pp. 151–192 (2008)Google Scholar
  20. 20.
    Lions, P.L.: Symétrie et compacité dans les espaces de Sobolev. J. Funct. Anal. 49(3), 315–334 (1982)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Morosi, C.; Pizzocchero, L.: On the constants for some fractional Gagliardo–Nirenberg and Sobolev inequalities. Expositiones Mathematicae 36(1), 32–77 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Nguyen, N.V.; Tian, R.; Deconinck, B.; Sheils, N.: Global existence for a coupled system of Schrödinger equations with power-type non-linearities. J. Math. Phys. 54, 011503 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Payne, L.E.; Sattinger, D.H.: Saddle points and instability of nonlinear hyperbolic equations. Isr. J. Math. 22, 273–303 (1975)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Saanouni, T.: A note on coupled focusing nonlinear Schrödinger equations. Appl. Anal. 95(9), 2063–2080 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Saanouni, T.: Defocusing coupled nonlinear Schrödinger equations. J. A. D. E. A. 7(1), 78–96 (2016)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Saanouni, T.: A note on coupled nonlinear Schrödinger equations. Adv. Nonlinear Anal. 3(4), 247–269 (2014)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Saanouni, T.: Remarks on damped fractional Schrödinger equation with pure power non-linearity. J. Math. Phys. 56, 061502 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Som, B.K.; Gupta, M.R.; Dasgupta, B.: Coupled nonlinear Schrödinger equation for Langmuir and dispersive ion acoustic waves. Phys. Lett. A 72, 111–114 (1979)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Sun, J.Q.; Ma, Z.Q.; Qin, M.Z.: Simulation of envelope Rossby solitons in a pair of cubic Schrödinger equations. Appl. Math. Comput. 183, 946–952 (2006)MathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Qassim UniversityBuraidahKingdom of Saudi Arabia
  2. 2.LR03ES04 Partial Differential Equations and Applications, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia

Personalised recommendations