On the characterization of the degree of interpolation polynomials in terms of certain combinatorical matrices
Abstract
In this note, we show that the degree of the interpolation polynomial for equidistant base points is characterized by the regularity of matrices of combinatorical type.
Mathematics Subject Classification
65D05 15B36 15A15 Download
to read the full article text
Notes
References
- 1.De Marchi, S.: Polynomials arising in factoring generalized Vandermonde determinants: an algorithm for computing their coefficients. Math. Comput. Model. 34(3/4), 271–281 (2001)MathSciNetCrossRefGoogle Scholar
- 2.de Camargo, A.P.: Schur functions through Lagrange polynomials. J. Pure Appl. Algebra 220(8), 2948–2954 (2016)MathSciNetCrossRefGoogle Scholar
- 3.Davis, P.J.: Interpolation and Approximation. Dover Publication Inc, New York (1975)zbMATHGoogle Scholar
- 4.Deuflhard, P.; Hohmann, A.: Numerical Analysis in Modern Scientific Computing. Springer, New York (2003)CrossRefGoogle Scholar
- 5.Heineman, E.R.: Generalized Vandermonde determinants. Trans. Am. Math. Soc. 31(3), 464–476 (1929)MathSciNetCrossRefGoogle Scholar
- 6.King, R.C.: Generalised Vandermonde determinants and Schur functions. Proc. Am. Math. Soc. 48(1), 53–56 (1975)MathSciNetCrossRefGoogle Scholar
- 7.Klinker, F., Reineke, C.: On the regularity of matrices with uniform polynomial entries. Sao Paulo J. Math. Sci. (2018), online 2017Google Scholar
- 8.Krattenthaler, C.: Advanced determinant calculus. Sem. Lothar. Combin. 42 Art. B42q, 67 (1999)Google Scholar
- 9.Krattenthaler, C.: Advanced determinant calculus: a complement. Linear Algebra Appl. 411, 68–166 (2005)MathSciNetCrossRefGoogle Scholar
- 10.Littlewood, D.E.: The Theory of Group Characters and Matrix Representations of Groups. Oxford University Press, New York (1940)zbMATHGoogle Scholar
- 11.Riordan, J.: Combinatorical Identities. Reprint of the 1968 Original. Robert E. Krieger Publishing Co., Huntington (1979)Google Scholar
Copyright information
© The Author(s) 2018
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.