In this paper, we investigate the complex dynamics of three-dimensional Ricker-type discrete-time competition model. We discuss the existence and uniqueness, and find parametric conditions for local asymptotic stability of positive fixed point of this model. It is also proved that the system undergoes Neimark–Sacker (NS) and period-doubling bifurcation (PDB) at certain parametric values for positive fixed point with the help of an explicit criterion for NS and PDB. The system shows chaotic dynamics at increasing values of bifurcation parameter. To control the chaos, we apply the hybrid control methodology. Finally, numerical simulations are provided to illustrate the theoretical discussions. These results of numerical simulations show chaotic long-term behavior over a broad range of parameters. The computation of the maximum Lyapunov exponents confirms the presence of chaotic behavior in the model.
Ahmad, S.: On the nonautonomous Volterra–Lotka competition equations. Proc. Am. Math. Soc. 117(1), 199–204 (1993)MathSciNetCrossRefGoogle Scholar
2.
Tang, X.; Zou, X.: On positive periodic solutions of Lotka–Volterra competition systems with deviating arguments. Proc. Am. Math. Soc. 134(10), 2967–2974 (2006)MathSciNetCrossRefGoogle Scholar
3.
Zhou, Z.; Zou, X.: Stable periodic solutions in a discrete periodic logistic equation. Appl. Math. Lett. 16(2), 165–171 (2003)MathSciNetCrossRefGoogle Scholar
4.
Liu, X.: A note on the existence of periodic solutions in discrete predator–prey models. Appl. Math. Model. 34(9), 2477–2483 (2010)MathSciNetCrossRefGoogle Scholar
5.
Freedman, H.I.: Deterministic Mathematical Models in Population Ecology, vol. 57 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, New York (1980)Google Scholar
6.
Agarwal, R.P.: Difference Equations and Inequalities, vol. 228 of Monographs and Textbooks in Pure and Applied Mathematics, 2nd edn. Marcel Dekker, New York (2000)Google Scholar
7.
Goh, B.S.: Management and Analysis of Biological Populations. Elsevier Scientific, Amsterdam (1980)Google Scholar
8.
Murray, J.D.: Mathematical Biology, vol 19 of Bio Mathematics. Springer, Berlin (1989)Google Scholar
9.
Din, Q.: Neimark–Sacker bifurcation and chaos control in Hassell–Varley model. J. Differ. Equ. Appl. 23(4), 741–762 (2017)MathSciNetCrossRefGoogle Scholar
10.
Din, Q.: Global stability and Neimark–Sacker bifurcation of a host-parasitoid model. Int. J. Syst. Sci. 48(6), 1194–1202 (2017)MathSciNetCrossRefGoogle Scholar
11.
Agiza, H.N.; Elabbasy, E.M.; El-Metwally, H.; Elsadany, A.A.: Chaotic dynamics of a discrete prey–predator model with Holling type II. Nonlinear Anal. Real World Appl. 10(1), 116–129 (2009)MathSciNetCrossRefGoogle Scholar
12.
Beddington, J.R.; Free, C.A.; Lawton, J.H.: Dynamic complexity in predator–prey models framed in difference equations. Nature 255(5503), 58 (1975)CrossRefGoogle Scholar
May, R.M.: Biological populations with non-overlapping generations: stable points, stable cycles, and chaos. Science 186, 645–647 (1974)CrossRefGoogle Scholar
15.
May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261(5560), 459 (1976)CrossRefGoogle Scholar
16.
Hofbauer, J.; Hutson, V.; Jansen, W.: Coexistence for systems governed by difference equations of Lotka–Volterra type. J. Math. Biol. 25(5), 553–570 (1987)MathSciNetCrossRefGoogle Scholar
17.
Roeger, L.: Discrete May–Leonard competition models II. Discret. Contin. Dyn. Syst. Ser. B 5(3), 841 (2005)MathSciNetCrossRefGoogle Scholar
18.
Grove, E.A.; Ladas, G.: Periodicities in nonlinear difference equations (Vol. 4). CRC Press, Boca Raton (2004)CrossRefGoogle Scholar
19.
He, Z.; Lai, X.: Bifurcation and chaotic behavior of a discrete-time predator–prey system. Nonlinear Anal. Real World Appl. 12(1), 403–417 (2011)MathSciNetCrossRefGoogle Scholar
20.
Din, Q.: Complexity and chaos control in a discrete-time prey–predator model. Commun. Nonlinear Sci. Numer. Simul. 49, 113–134 (2017)MathSciNetCrossRefGoogle Scholar
21.
Sun, H.; Cao, H.: Bifurcations and chaos of a delayed ecological model. Chaos Solitons Fractals 33(4), 1383–1393 (2007)MathSciNetCrossRefGoogle Scholar
22.
Elaydi, S.N.; Sacker, R.J.: Population models with Allee effect: a new model. J. Biol. Dyn. 4(4), 397–408 (2010)MathSciNetCrossRefGoogle Scholar
23.
Wen, G.: Criterion to identify Hopf bifurcations in maps of arbitrary dimension. Phys. Rev. E 72(2), 026201 (2005)MathSciNetCrossRefGoogle Scholar
24.
Yao, S.: New Bifurcation Critical Criterion of Flip–Neimark–Sacker Bifurcations for Two-Parameterized Family of-Dimensional Discrete Systems. Discrete Dynamics in Nature and Society (2012)Google Scholar
25.
Wen, G.; Chen, S.; Jin, Q.: A new criterion of period-doubling bifurcation in maps and its application to an inertial impact shaker. J. Sound Vib. 311(1–2), 212–223 (2008)CrossRefGoogle Scholar
26.
Lynch, S.: Dynamical Systems with Applications Using Mathematica, pp. 111–123. Birkhäuser, Boston (2007)CrossRefGoogle Scholar
27.
Din, Q.; Gümüş, Ö.A.; Khalil, H.: Neimark–Sacker bifurcation and chaotic behaviour of a modified Host–Parasitoid Model. Z. Nat. A 72(1), 25–37 (2017)Google Scholar
28.
Din, Q.: Bifurcation analysis and chaos control in discrete-time glycolysis models. J. Math. Chem. 56(3), 904–931 (2018)MathSciNetCrossRefGoogle Scholar
29.
Din, Q.; Donchev, T.; Kolev, D.: Stability, bifurcation analysis and chaos control in chlorine dioxide-iodine-malonic acid reaction. MATCH Commun. Math. Comput. Chem. 79(3), 577–606 (2018)MathSciNetGoogle Scholar
30.
Din, Q.; Saeed, U.: Bifurcation analysis and chaos control in a host-parasitoid model. Math. Methods Appl. Sci. 40(14), 5391–5406 (2017)MathSciNetCrossRefGoogle Scholar
31.
Yuan, L.G.; Yang, Q.G.: Bifurcation, invariant curve and hybrid control in a discrete-time predator–prey system. Appl. Math. Model. 39(8), 2345–2362 (2015)MathSciNetCrossRefGoogle Scholar
32.
Luo, X.S.; Chen, G.; Wang, B.H.; Fang, J.Q.: Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems. Chaos Solitons Fractals 18(4), 775–783 (2003)CrossRefGoogle Scholar
33.
Cushing, J.M.; Cantantino, R.F.; Dennis, B.; Desharnais, R.A.; Henson, S.M.: Chaos in Ecology. Academic Press, New York (2002)Google Scholar
34.
Romeiras, F.J.; Grebogi, C.; Ott, E.; Dayawansa, W.P.: Controlling chaotic dynamical systems. Phys. D 58(1–4), 165–192 (1992)MathSciNetCrossRefGoogle Scholar
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.