On the cohomology ring and upper characteristic rank of Grassmannian of oriented 3-planes

  • Somnath BasuEmail author
  • Prateep Chakraborty


In this paper we study the mod 2 cohomology ring of the Grasmannian \(\widetilde{G}_{n,3}\) of oriented 3-planes in \({\mathbb {R}}^n\). We determine the degrees of the indecomposable elements in the cohomology ring. We also obtain an almost complete description of the cohomology ring. This description allows us to provide lower and upper bounds on the cup length of \(\widetilde{G}_{n,3}\). As another application, we show that the upper characteristic rank of \(\widetilde{G}_{n,3}\) equals the characteristic rank of \(\widetilde{\gamma }_{n,3}\), the oriented tautological bundle over \(\widetilde{G}_{n,3}\) if n is at least 8.


Oriented Grassmanian of three planes Upper characteristic rank Cup-length 

Mathematics Subject Classification

Primary 57R19 57R20 57T15 Secondary 55R20 55R25 



  1. 1.
    Borel, A.: Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts. Ann. Math. 57, 115–207 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Fukaya, T.: Gröbner bases of oriented Grassmann manifolds. Homol. Homotopy Appl. 10, 195–209 (2008)CrossRefzbMATHGoogle Scholar
  3. 3.
    Korbaš, J.: The cup-length of the oriented Grassmannians vs a new bound for zero-cobordant manifolds. Bull. Belg. Math. Soc. Simon Stevin 17, 69–81 (2010)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Korbaš, J.: The characteristic rank and cup-length in oriented Grassmann manifolds. Osaka J. Math. 52, 1163–1172 (2015)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Korbaš, J., Rusin, T.: A note on the \({\mathbb{Z}}_2\)-cohomology algebra of oriented Grassmann manifolds. Rend. Circ. Mat. Palermo 2(65), 507–517 (2016)CrossRefzbMATHGoogle Scholar
  6. 6.
    Korbaš, J., Rusin, T.: On the cohomology of oriented Grassmann manifolds. Homol. Homotopy Appl. 18, 71–84 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lai, H.F.: On the topology of the even-dimensional complex quadrics. Proc. Am. Math. Soc. 46, 419–425 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lucas, E.: Theorie des fonctions numeriques simplement periodiques. Am. J. Math. 1, 289–321 (1878)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Milnor, J.W., Stasheff, J.D.: Characteristic Classes. Annals of Mathematics Studies, no. 76. Princeton University Press, Princeton (1974)Google Scholar
  10. 10.
    Naolekar, A.C., Thakur, A.S.: Note on the characteristic rank of vector bundles. Math. Slovaca 64, 1525–1540 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Petrović, Z.Z., Prvulović, B.I., Radovanović, M.: Characteristic rank of canonical vector bundles over oriented Grassmann manifolds \(G_{3, n}\). Topol. Appl. 230, 114–121 (2017)CrossRefzbMATHGoogle Scholar
  12. 12.
    Rusin, T.: A note on the characteristic rank of oriented Grassmann manifolds. Topol. Appl. 216, 48–58 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Tbilisi Centre for Mathematical Sciences 2019

Authors and Affiliations

  1. 1.Indian Institute of Science Education and ResearchMohanpurIndia
  2. 2.Indian Institute of TechonologyKharagpurIndia

Personalised recommendations