Advertisement

Weight decompositions of Thom spaces of vector bundles in rational homotopy

  • Urtzi Buijs
  • Federico Cantero MoránEmail author
  • Joana Cirici
Article

Abstract

Motivated by the theory of representability classes by submanifolds, we study the rational homotopy theory of Thom spaces of vector bundles. We first give a Thom isomorphism at the level of rational homotopy, extending work of Félix-Oprea-Tanré by removing hypothesis of nilpotency of the base and orientability of the bundle. Then, we use the theory of weight decompositions in rational homotopy to give a criterion of representability of classes by submanifolds, generalising results of Papadima. Along the way, we study issues of formality and give formulas for Massey products of Thom spaces. Lastly, we link the theory of weight decompositions with mixed Hodge theory and apply our results to motivic Thom spaces.

Keywords

Thom spaces Rational homotopy theory Smoothing theory Thom isomorphism theorem Mixed Hodge structures Weight decompositions Motivic Thom spaces 

Notes

Acknowledgements

We thank Yves Félix for answering our many questions and for telling us about spaces with weight decompositions. Thanks also to Vicente Navarro for his ideas on mixed Hodge theory and useful comments. We are also grateful to Andrew Baker, Pascal Lambrechts, Luc Menichi and Jean-Claude Thomas for their feedback at the early stages of this project. Thanks also to Nero Budur for spotting an imprecision in our exposition of mixed Hodge theory.

References

  1. 1.
    Body, R., Douglas, R.: Rational homotopy and unique factorization. Pac. J. Math. 75(2), 331–338 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Buijs, U., Félix, Y., Murillo, A., Tanré, D.: The infinity Quillen functor, Maurer-Cartan elements and DGL realizations. arXiv:1702.04397
  3. 3.
    Buijs, U., Gutiérrez, J.J.: Homotopy transfer and rational models for mapping spaces. J. Homotopy Relat. Struct. 11(2), 309–332 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Body, R., Mimura, M., Shiga, H., Sullivan, D.: \(p\)-universal spaces and rational homotopy types. Comment. Math. Helv. 73(3), 427–442 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Booth, P.I.: Fibrations and classifying spaces: overview and the classical examples. Cahiers Topologie Géom. Différentielle Catég. 41(3), 162–206 (2000)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology, Graduate Texts in Mathematics, vol. 82. Springer, New York (1982)CrossRefzbMATHGoogle Scholar
  7. 7.
    Burlet, O.: Cobordismes de plongements et produits homotopiques. Comment. Math. Helv. 46, 277–288 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cirici, J., Guillén, F.: \(E_1\)-formality of complex algebraic varieties. Algebr. Geom. Topol. 14(5), 3049–3079 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cirici, J., Horel, G.: Mixed Hodge structures and formality of symmetric monoidal functors, Ann. Sci. Éc. Norm. Supér (to appear) Google Scholar
  10. 10.
    Cantero Morán, F., Randal-Williams, O.: Homological stability for spaces of embedded surfaces. Geom. Topol. 21, 1387–1467 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Deligne, P.: Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40, 5–57 (1971)Google Scholar
  12. 12.
    Deligne, P.: Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. 44, 5–77 (1974)Google Scholar
  13. 13.
    Félix, Y., Halperin, S., Thomas, J.-C.: Rational Homotopy Theory, Graduate Texts in Mathematics, vol. 205. Springer, New York (2001)CrossRefGoogle Scholar
  14. 14.
    Félix, Y., Oprea, J., Tanré, D.: Lie-model for Thom spaces of tangent bundles. Proc. Am. Math. Soc. 144(4), 1829–1840 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hain, R.: The de Rham homotopy theory of complex algebraic varieties II. K-Theory 1(5), 481–497 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Halperin, S., Stasheff, J.: Obstructions to homotopy equivalences. Adv. Math. 32(3), 233–279 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Huber, A.: Mixed Motives and Their Realization in Derived Categories. Lecture Notes in Mathematics, vol. 1604. Springer, Berlin (1995)CrossRefzbMATHGoogle Scholar
  18. 18.
    Loday, J.-L., Vallette, B.: Algebraic operads, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 346. Springer, Heidelberg (2012)Google Scholar
  19. 19.
    Morgan, J.W.: The algebraic topology of smooth algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 48, 137–204 (1978)Google Scholar
  20. 20.
    Navarro-Aznar, V.: Sur la théorie de Hodge-Deligne. Invent. Math. 90(1), 11–76 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Papadima, Ş.: The rational homotopy of Thom spaces and the smoothing of homology classes. Comment. Math. Helv. 60(4), 601–614 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Peters, C., Steenbrink, J.: Mixed Hodge structures, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge A Series of Modern Surveys in Mathematics, vol. 52. Springer, Berlin (2008)Google Scholar
  23. 23.
    Quillen, D.: Rational homotopy theory. Ann. Math. (2) 90, 205–295 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Rudyak, Y.: Tralle, Aleksy: On Thom spaces, Massey products, and nonformal symplectic manifolds. Int. Math. Res. Notices 10, 495–513 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Shiga, H.: Rational homotopy type and self-maps. J. Math. Soc. Jpn. 31(3), 427–434 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Stong, R.E.: Notes on Cobordism Theory, Mathematical Notes. Princeton University Press, Princeton (1968)zbMATHGoogle Scholar
  27. 27.
    Sullivan, D.: Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. (1977), 47, 269–331 (1978)Google Scholar
  28. 28.
    Thom, R.: Quelques propriétés globales des variétés différentiables. Comment. Math. Helv. 28, 17–86 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Voevodsky, V.: \({\bf A}^1\)-homotopy theory, Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998), no. Extra Vol. I, pp. 579–604 (1998)Google Scholar

Copyright information

© Tbilisi Centre for Mathematical Sciences 2019

Authors and Affiliations

  • Urtzi Buijs
    • 1
  • Federico Cantero Morán
    • 2
    Email author
  • Joana Cirici
    • 2
  1. 1.Department of Algebra, Geometry and TopologyUniversidad de MálagaMálagaSpain
  2. 2.Mathematics and Computer ScienceUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations