TiO2/Fe2O3: Type-I Heterostructures for Electrochemical Dye Degradation/Water Splitting Studies

  • Dilip Kumar BeharaEmail author
  • Sudha Maheswari Mukkara
  • Tammineni Jalajakshi
Original Contribution


In contemporary research, semiconductor composite materials, i.e., combination of different semiconductor materials, play an important role in extracting needful energy from existing renewable energy forms. For example, “heterostructure” composite assemblies facilitate faster charge carrier transport and therefore improve the efficiency of the electro-/photoelectrochemical processes/devices due to synergistic interaction and synchronized charge transport across material interfaces that have formed in composite assembly. Herein, we report type-I heterostructure consists of TiO2 and Fe2O3 for crystal violet dye degradation and water splitting studies via electrochemical route. The rationale in choosing the above materials (TiO2, Fe2O3) in the present study will not only account stability, nontoxicity, and high oxidation power but also facilitate the fast charge carrier movements due to proper band edge alignments. Synthesized TiO2, Fe2O3, and TiO2/Fe2O3 nanoparticle assemblies were fabricated as electrodes on titanium (Ti) and indium tin oxide (ITO) substrates and used as anode in electrochemical analysis. Complete decolorization was achieved with all the fabricated electrodes and higher rate of degradation was achieved with composite electrode (Ti/TiO2/Fe2O3) than individuals (bare Ti, Ti/TiO2, Ti/Fe2O3). Further, the same composite electrode shows better performance toward electrochemical water splitting in comparison with individual electrodes.


TiO2 Fe2O3 Crystal violet dye Electrochemical degradation Type-I heterostructures 



We thank University Grants Commission (UGC XII Plan/2016-17), Govt. of India, for supporting this work.


This work was carried with funds from UGC XII plan funds and University Development Funds (UDF) of JNT University, Ananthapur (AP).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    W. Li, D. Li, S. Meng, W. Chen, X. Fu, Y. Shao, Environ. Sci. Technol. 45, 2987–2993 (2011)CrossRefGoogle Scholar
  2. 2.
    E. Chatzisymeon, N.P. Xekoukoulotakis, A. Coz, N. Kalogerakis, D. Mantzavinos, J. Hazard Mater. B 137, 998–1000 (2006)CrossRefGoogle Scholar
  3. 3.
    P. Kariyajjanavar, J. Narayana, Y.A. Nayaka, M. Umanaik, Port. Electrochim. Acta 28(4), 265–277 (2010)CrossRefGoogle Scholar
  4. 4.
    N. Bensalaha, M.A. Quiroz Alfaro, C.A. Martínez-Huitle, Chem. Eng. J. 149, 348–352 (2009)CrossRefGoogle Scholar
  5. 5.
    M. Jović, D. Stanković, D. Manojlović, I. Anđelković, A. Milić, B. Dojčinović, G. Roglić, Int. J. Electrochem. Sci. 8, 168–183 (2013)Google Scholar
  6. 6.
    S. Shukla, M.A. Oturan, Environ. Chem. Lett. 13(2), 157–172 (2015)CrossRefGoogle Scholar
  7. 7.
    C. Nasr, K. Vinodgopal, L. Fisher, S. Hotchandani, A.K. Chattopadhyay, P.V. Kamat, J. Phys. Chem. 100(20), 8436–8442 (1996)CrossRefGoogle Scholar
  8. 8.
    Lumei He, Liqiang Jing, Yunbo Luan, Lei Wang, Fu Honggang, ACS Catal. 4, 990–998 (2014)CrossRefGoogle Scholar
  9. 9.
    A.K. Patra, A. Dutta, A. Bhaumik, ACS Appl. Mater. Interfaces 4, 5022–5028 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Tushar, K. Manjusha, D. Pravarthana, W. Ramadan, P. Thakur, J. Nanosci. Nanotechnol. 12(2), 928–936 (2012)CrossRefGoogle Scholar
  11. 11.
    D.K. Behara, A.K. Ummireddi, V. Aragonda, P.K. Gupta, R.G. Pala, S. Sivakumar, Phys. Chem. Chem. Phys. 18, 8364–8377 (2016)CrossRefGoogle Scholar
  12. 12.
    S.G. Kumar, L.G. Devi, J. Phys. Chem. A 115, 13211–13241 (2011)CrossRefGoogle Scholar
  13. 13.
    A. Socha, E. Sochocka, R. Podsiadly, J. Sokolowska, Color. Technol. 122, 207–212 (2006)CrossRefGoogle Scholar
  14. 14.
    D.K. Behara, G.P. Sharma, A.P. Upadhyay, M. Gyanprakash, R.G. Pala, S. Sivakumar, Chem. Eng. Sci. 154, 150–169 (2016)CrossRefGoogle Scholar
  15. 15.
    S. Bagheri, K.G. Chandrappa, S.B.A. Hamid, Res. J. Chem. Sci. 3(7), 62–68 (2013)Google Scholar
  16. 16.
    B. Palanisamy, C.M. Babu, B. Sundaravel, S. Anandan, V. Murugesan, J. Hazard Mater. 252–253, 233–242 (2013)CrossRefGoogle Scholar
  17. 17.
    M. Jović, D. Stanković, D. Manojlović, I. Anđelković, A. Milić, B. Dojčinović, G. Roglić, Int. J. Electrochem. Sci. 8, 168–183 (2013)Google Scholar
  18. 18.
    A. Amalraj, A. Pius, J. Chem. Appl. Biochem. 1(1), 105 (2014)Google Scholar
  19. 19.
    S.K. Sahoo, K. Agarwal, A.K. Singh, B.G. Polke, K.C. Raha, Int. J. Eng. Sci. Technol. 2(8), 118–126 (2010)Google Scholar
  20. 20.
    H.-J. Fan, S.-T. Huang, W.-H. Chung, J.-L. Jan, W.-Y. Lin, C.-C. Chen, J. Hazard Mater. 171, 1032–1044 (2009)CrossRefGoogle Scholar
  21. 21.
    S.D. Richardson, Anal. Chem. 80, 4373–4402 (2008)CrossRefGoogle Scholar
  22. 22.
    S. Singh, V.C. Srivastava, I.D. Mall, J. Phys. Chem. C 117, 15229–15240 (2013)CrossRefGoogle Scholar
  23. 23.
    Y.-H.B. Liao, J.X. Wang, J.S. Lin, W.-Y. Lin, C.-C. Chen, Catal. Today 174(1), 148–159 (2011)CrossRefGoogle Scholar
  24. 24.
    H.-J. Fan, S.-T. Huang, W.-H. Chung, J.-L. Jan, W.-Y. Lin, C.-C. Chen, J. Hazard Mater. 15, 1032–1044 (2009)CrossRefGoogle Scholar
  25. 25.
    Palukuru PS, Vishnu Priya N, Devangam A, and Behara DK, Iran. J. Chem. Chem. Eng. (in press)Google Scholar

Copyright information

© The Institution of Engineers (India) 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringJNTUA College of EngineeringAnanthapuramuIndia

Personalised recommendations