Advertisement

Synthesis and Characterization of Oleic Acid-Capped Metallic Copper Nanoparticle via Chemical Reduction Method

  • Zeenat Arif
  • A. B. Soni
  • S. N. Victoria
  • R. ManivannanEmail author
Original Contribution

Abstract

Copper nanoparticles were synthesized from copper chloride precursor using sodium formaldehyde sulfoxylate as the reducing agent. Oleic acid was used as the capping agent. Surfactants like polyvinyl alcohol/polyvinyl pyrrolidone were used to avoid the oxide formation and to prevent the agglomeration. Use of polyvinyl pyrrolidone resulted in better-quality samples. X-ray diffraction studies showed that the crystallite size of the particles decreased with an increase in the reaction temperature. Energy-dispersive X-ray spectroscopy analysis for the samples synthesized at various temperatures showed a lower degree of oxidation at higher reaction temperatures. Particles of uniform shape were obtained at higher reducing agent concentration. Transmission electron microscopy studies showed the formation of spherical particles between 10 and 30 nm diameter. Results from selective area diffraction pattern confirm the formation of copper nanoparticles.

Keywords

Copper Chemical reduction Stability Surfactants Crystal size 

Notes

Acknowledgements

We thank the Department of Chemical Engineering IIT Madras for their support to carry out the particle size distribution analysis.

References

  1. 1.
    I. Khan, K. Saeed, I. Khan, Arab. J. Chem. (2017) AcceptedGoogle Scholar
  2. 2.
    S. Chandra, A. Kumar, P.K. Tomar, J. Saudi Chem. Soc. 18, 149 (2014)CrossRefGoogle Scholar
  3. 3.
    K.-Y. Yoon, J.H. Byeon, J.-H. Park, J. Hwang, Sci. Total Environ. 373, 572 (2007)CrossRefGoogle Scholar
  4. 4.
    P. Kanhed, S. Birla, S. Gaikwad, A. Gade, A.B. Seabra, O. Rubilar, N. Duran, M. Rai, Mater. Lett. 115, 13 (2014)CrossRefGoogle Scholar
  5. 5.
    M. Salavati-Nisari, N. Mir, F. Davar, Appl. Surf. Sci. 256, 4003 (2010)CrossRefGoogle Scholar
  6. 6.
    M. Salavati-Niasari, F. Davar, N. Mir, Polyhedron 27, 3514 (2008)CrossRefGoogle Scholar
  7. 7.
    R.K. Nekouei, F. Rashchi, A. Ravanbakhsh, Powder Technol. 250, 91 (2013)CrossRefGoogle Scholar
  8. 8.
    P.K. Khanna, S. Gaikwad, P.V. Adhyapak, N. Singh, R. Marimuthu, Mater. Lett. 61, 4711 (2007)CrossRefGoogle Scholar
  9. 9.
    S. Wu, Mater. Lett. 61, 1125 (2007)CrossRefGoogle Scholar
  10. 10.
    B.-K. Park, S. Jeong, D. Kim, J. Moon, S. Lim, J.S. Kim, J. Colloids Interface Sci. 311, 417 (2007)CrossRefGoogle Scholar
  11. 11.
    L. Qi, J. Ma, J. Shen, J. Colloids Interface Sci. 186, 498 (1997)CrossRefGoogle Scholar
  12. 12.
    G. Lee, C. Kyu, M. Ku, C. Kyu, Powder Technol. 261, 143 (2014)CrossRefGoogle Scholar
  13. 13.
    C. Dong, H. Cai, X. Zhang, C. Caomacacia, Phys. E Low-Dimens. Syst. Nanostruct. 57, 12 (2014)CrossRefGoogle Scholar
  14. 14.
    M.I.S. Biçer, Powder Technol. 198, 279 (2010)CrossRefGoogle Scholar
  15. 15.
    Z. Qiu-li, Y. Zhi-Mao, D. Bing-Jun, Trans. Nonferrous Met. Soc. China 20, s240 (2009)Google Scholar
  16. 16.
    J. Wen, J. Li, S. Liu, Q. Chen, Colloids Surf. A Physicochem. Eng. Asp. 373, 29 (2011)CrossRefGoogle Scholar
  17. 17.
    M. Faraji, R. Poursalehi, M. Aliofkhazraei, Proc. Mater. Sci. 11, 684 (2015)CrossRefGoogle Scholar
  18. 18.
    M.B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R.S. Varma, Chem. Rev. 116, 3722 (2016)CrossRefGoogle Scholar
  19. 19.
    F.N. Sayed, V. Polshettiwar, Sci. Rep. 5, 09733 (2015)CrossRefGoogle Scholar
  20. 20.
    L. Ernawati, R. Balgis, T. Ogi, K. Okuyama, T. Takada, Chem. Process Eng. 38(1), 5 (2017)CrossRefGoogle Scholar
  21. 21.
    V.D. Cao, N.Q. Tran, T.P.P. Nguyen, J. Exp. Nanosci. 10(8), 576 (2015)CrossRefGoogle Scholar
  22. 22.
    Y. Zhai, M. Shim, Chem. Mater. 29(5), 2390 (2017)CrossRefGoogle Scholar
  23. 23.
    M.P. Pileni, Nat. Mater. 2, 145 (2003)CrossRefGoogle Scholar
  24. 24.
    A. Habib, N. Stelzer, P. Angerer, R. Haubner, Bull. Mater. Sci. 34(1), 19 (2011)CrossRefGoogle Scholar
  25. 25.
    M. Kumari, A. Mishra, S. Pandey, S.P. Singh, V. Chaudhry, M.K.R. Mudiam, S. Shukla, P. Kakkar, C.S. Nautiyal, Sci. Rep. 6, 27575 (2016)CrossRefGoogle Scholar
  26. 26.
    G. Suriati, M. Mariatti, A. Azizan, Int. J. Automot. Mech. Eng. 10, 1920 (2014)CrossRefGoogle Scholar
  27. 27.
    S.M. Pawar, J. Kim, A.I. Inamdar, H. Woo, Y. Jo, B.S. Pawar, S. Cho, H. Kim, H. Im, Sci. Rep. 6, 21310 (2016)CrossRefGoogle Scholar
  28. 28.
    L.Q. Pham, J.H. Sohn, C.W. Kim, J.H. Park, H.S. Kang, B.C. Lee, Y.S. Kang, J. Colloid Interface Sci. 365, 103 (2012)CrossRefGoogle Scholar
  29. 29.
    T. Theivasanthi, M. Alagar, J. Phys. Sci. 6, 3662 (2011)Google Scholar
  30. 30.
    H.J. Lee, J.Y. Song, B.S. Kim, J. Chem. Technol. Biotechnol. 88, 1971 (2013)Google Scholar
  31. 31.
    S.R. Kodigala, Thin Film Solar Cells from Earth Abundant Materials (Elsevier, London, 2014)Google Scholar

Copyright information

© The Institution of Engineers (India) 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringNational Institute of TechnologyRaipurIndia

Personalised recommendations