Cotton Fabric Selection Using a Grey Fuzzy Relational Analysis Approach

  • Shankar ChakrabortyEmail author
  • Prasenjit Chatterjee
  • Partha Protim Das
Original Contribution


A multi-criteria decision-making (MCDM) problem usually deals with selection of the best course of action or alternative in the presence of a set of conflicting criteria. Cotton fabric selection to meet some specific end requirements is also a typical MCDM problem. In this paper, an MCDM technique in the form of grey relational analysis is combined with fuzzy logic to solve two cotton fabric selection problems. The derived rankings of the candidate alternatives have a high degree of congruence with those obtained while applying other popular MCDM tools. It thus proves the application potentiality of this combined approach to solve such decision-making problems when there are ambiguities in the measured data, and incomplete or qualitative information.


Cotton fabric Selection Grey relational analysis Fuzzy logic Rank 


  1. 1.
    A. Das, V.K. Kothari, A. Sadachar, Comfort characteristics of fabrics made of compact yarns. Fibers Polym. 8(1), 116–122 (2007)CrossRefGoogle Scholar
  2. 2.
    A. Ghosh, P. Mal, A. Majumdar, D. Banerjee, An investigation on air and thermal transmission through knitted fabric structures using the Taguchi method. AUTEX Res. J. 17(2), 152–163 (2017)CrossRefGoogle Scholar
  3. 3.
    A. Majumdar, S.P. Singh, A. Ghosh, Modelling, optimization and decision making techniques in designing of functional clothing. Indian J. Fibre Text. Res. 36(4), 398–409 (2011)Google Scholar
  4. 4.
    M.K. Öztürk, B. Nergis, C. Candan, Application of multicriteria decision making approach to the analysis of comfort properties of wool/acrylic blended fabrics. J. Chem. Chem. Eng 5(12), 1069–1073 (2011)Google Scholar
  5. 5.
    M.S. Alam, A. Ghosh, Selection of cotton fabrics for optimal comfort properties using multi-criteria decision making. J. Text. Appar. Technol. Manag. 8(3), 1–8 (2013)Google Scholar
  6. 6.
    A. Mitra, P.K. Majumdar, D. Bannerjee, Predicting air permeability of handloom fabrics: a comparative analysis of regression and artificial neural network models. J. Inst. Eng. Ser. E 94(1), 29–36 (2013)CrossRefGoogle Scholar
  7. 7.
    A. Mitra, Selection of handloom fabrics for summer clothing by AHP method of multi-criteria decision making (MCDM) techniques. Int. J. Manag. IT Eng. 3(8), 265–278 (2013)Google Scholar
  8. 8.
    A. Mitra, A. Majumdar, P.K. Majumdar, D. Bannerjee, Predicting thermal resistance of cotton fabrics by artificial neural network model. Exp. Thermal Fluid Sci. 50, 172–177 (2013)CrossRefGoogle Scholar
  9. 9.
    A. Mitra, A. Majumdar, A. Ghosh, P.K. Majumdar, D. Bannerjee, Selection of handloom fabrics for summer clothing using multi-criteria decision making techniques. J. Nat. Fibers 12(1), 61–71 (2015)CrossRefGoogle Scholar
  10. 10.
    A. Mitra, P.K. Majumdar, D. Banerjee, Production of engineered fabrics using artificial neural network-genetic algorithm hybrid model. J. Inst. Eng. Ser. E 96(2), 159–165 (2015)CrossRefGoogle Scholar
  11. 11.
    P. Mal, A. Ghosh, A. Majumdar, D. Banerjee, Engineering of knitted cotton fabrics for optimum comfort in a hot climate. Fibres Text. East. Eur 24(2), 102–106 (2016)CrossRefGoogle Scholar
  12. 12.
    A. Majumdar, P. Mal, A. Ghosh, D. Banerjee, Multi-objective optimization of air permeability and thermal conductivity of knitted fabrics with desired ultraviolet protection. J. Text. Inst. 108(1), 110–116 (2017)CrossRefGoogle Scholar
  13. 13.
    J. Deng, Introduction to grey system theory. J. Grey Syst. 1(1), 1–24 (1989)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Y. Kuo, T. Yang, G.-W. Huang, The use of grey relational analysis in solving multiple attribute decision-making problems. Comput. Ind. Eng. 55(1), 80–93 (2008)CrossRefGoogle Scholar
  15. 15.
    C.-F.J. Kuo, T.-L. Su, Gray relational analysis for recognizing fabric defects. J. Text. Inst. 73(5), 461–465 (2003)Google Scholar
  16. 16.
    C.-F.J. Kuo, H.-M. Tu, Gray relational analysis approach for the optimization of process setting in textile calendaring. J. Text. Inst. 79(11), 981–992 (2009)Google Scholar
  17. 17.
    T.-L. Su, Y.-L. Kuo, H.-W. Chen, F.-C. Kung, Grey relational analysis of an automatic identifying system for clothing texture. Fibres Text. East. Eur 18(2), 60–64 (2010)Google Scholar
  18. 18.
    H. Hasani, S.A. Tabatabaei, G. Amiri, Grey relational analysis to determine the optimum process parameters for open-end spinning yarns. J. Eng. Fibers Fabr. 7(2), 81–86 (2012)Google Scholar
  19. 19.
    Ç. Sarpkaya, E. Özgür, E.C. Sabir, The optimization of woven fabric tensile strength with Taguchi method based on grey relational analysis. J. Text. Appar. 25(4), 293–299 (2015)Google Scholar
  20. 20.
    Ç. Sarpkaya, E.C. Sabir, Optimization of the sizing process with grey relational analysis. Fibres Text. East. Eur 24(1), 49–55 (2016)CrossRefGoogle Scholar
  21. 21.
    T. Hussain, F.A. Arain, Z.A. Malik, Use of Taguchi method and grey relational analysis to optimize multiple yarn characteristics in open-end rotor spinning. AUTEX Res. J. 17(1), 67–72 (2017)CrossRefGoogle Scholar
  22. 22.
    M. Jabbar, K. Shaker, M. Umair, Y. Nawab, Optimizing the performance of woven protective gloves using grey relational analysis. J. Text. Inst. 108(10), 1715–1719 (2017)CrossRefGoogle Scholar
  23. 23.
    M. Maqsood, T. Hussain, N. Ahmad, Y. Nawab, Multi-response optimization of mechanical and comfort properties of bi-stretch woven fabrics using grey relational analysis in Taguchi method. J. Text. Inst. 108(5), 794–802 (2017)CrossRefGoogle Scholar
  24. 24.
    L. Zadeh, Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefzbMATHGoogle Scholar
  25. 25.
    E.H. Mamdani, A. Sedrak, An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7(1), 1–13 (1975)CrossRefzbMATHGoogle Scholar
  26. 26.
    A. Hamam, N.D. Georganas, A comparison of Mamdani and Sugeno fuzzy inference systems for evaluating the quality of experience of Hapto-Audio-Visual applications, in Proceedings of IEEE International Workshop on Haptic Audio Visual Environments and Games, Canada (2008), pp. 87–92Google Scholar
  27. 27.
    S. Goyal, S. Grover, Applying fuzzy grey relational analysis for ranking the advanced manufacturing systems. Grey Syst. Theory Appl. 2(2), 284–298 (2012)CrossRefGoogle Scholar
  28. 28.
    S. Chakraborty, P.P. Das, V. Kumar, A grey fuzzy logic approach for cotton fibre selection. J. Inst. Eng. Ser. E 98(1), 1–9 (2017)CrossRefGoogle Scholar

Copyright information

© The Institution of Engineers (India) 2018

Authors and Affiliations

  • Shankar Chakraborty
    • 1
    Email author
  • Prasenjit Chatterjee
    • 2
  • Partha Protim Das
    • 3
  1. 1.Department of Production EngineeringJadavpur UniversityKolkataIndia
  2. 2.Department of Mechanical EngineeringMCKV Institute of EngineeringHowrahIndia
  3. 3.Department of Mechanical EngineeringSikkim Manipal Institute of TechnologyMajitarIndia

Personalised recommendations