Advertisement

Ultrasonic Vibration-Induced Shape Memory Polymer (Polyurethane)/Graphene Nanoplatelets Composite

  • Krishan Kumar PatelEmail author
  • Rajesh Purohit
Original Contribution
  • 1 Downloads

Abstract

Ultrasonic vibration (UV)-induced shape memory polyurethane (PU) and composite containing 1 phr (part per hundred) graphene nanoplatelets (GNPs) were prepared through ex situ polymerization by using microcompounder. Atomic force microscopy and field emission scanning electron microscopy were used for the characterization of surface morphology, surface roughness, and graphene nanoplatelets dispersion in the polyurethane matrix. The thermomechanical properties (storage modulus, loss modulus, energy dissipation factor, and glass transition temperature) were determined by using the dynamic mechanical analyzer. The thermomechanical properties, shape memory stretch and recovery strength, shape fixity, tensile strength, and UV-induced shape recovery are enhancing for a composite having 1 GPU (1 phr GNPs in PU matrix). Shape memory and mechanical properties were improved for composite sample as compared to pure polyurethane. 1 GPU composite sample shows ultrasonic vibration-induced shape recovery, whereas pure polyurethane sample has no shape recovery. The UV-induced shape recovery strongly depends on the dispersion of GNPs and frequency of ultrasonic vibration. For composite sample (1 GPU), embedded GNPs in the PU matrix may absorb the UV frequency and converted into heat energy (lattice vibration of GNPs and heat is transfer through conduction) which is responsible for shape recovery. With increase in the frequency of UV, the shape recovery also increases for the composite. Glass transition temperature (Tg) was influenced with the addition of GNPs into neat polyurethane matrix. UV-induced shape recovery test was carried out in an ultrasonic vibration transducer with variable frequency (0–40 kHz).

Keywords

Shape memory polyurethane AFM GNPs Ultrasonic vibration Nanocomposite 

Notes

Acknowledgements

All authors pledge their great thanks toward the Maulana Azad National Institute of Technology, Bhopal, for providing research grants.

Compliance with Ethical Standards

Conflict of interest

The author Krishan Kumar Patel declares that he has no conflict of interest.

References

  1. 1.
    H. Meng, G. Li, A review of stimuli-responsive shape memory polymer composites. Polymer 54(9), 2199–2221 (2013)CrossRefGoogle Scholar
  2. 2.
    C. Liu, H. Qin, P.T. Mather, Review of progress in shape-memory polymers. J. Mater. Chem. 17, 1543–1558 (2007).  https://doi.org/10.1039/B615954K CrossRefGoogle Scholar
  3. 3.
    M.D. Hager, S. Bode, C. Weber, U.S. Schubert, Shape memory polymers: past, present and future developments. Prog. Polym. Sci. 49, 3 (2015).  https://doi.org/10.1016/j.progpolymsci.2015.04.002 CrossRefGoogle Scholar
  4. 4.
    K.K. Patel, R. Purohit, Future Prospects of shape memory polymer nano-composite and epoxy based shape memory polymer—a review. Mater. Today Proc. 5(9), 20193–20200 (2018)CrossRefGoogle Scholar
  5. 5.
    R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A.K. Bhowmick, A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog. Polym. Sci. 36(5), 638–670 (2011)CrossRefGoogle Scholar
  6. 6.
    A. Nag, A. Mitra, S.C. Mukhopadhyay, Graphene and its sensor-based applications: a review. Sensors Actuators A Phys 270, 177–194 (2017)CrossRefGoogle Scholar
  7. 7.
    G.K. Gupta, K.K. Patel, R. Purohit, P. Bhagoria, Effect of rolling on Ni–Ti–Fe shape memory alloys prepared through novel powder metallurgy route. Mater. Today Proc. 4(4), 5385–5397 (2017).  https://doi.org/10.1016/j.matpr.2017.05.050 CrossRefGoogle Scholar
  8. 8.
    A. Belmonte, G.C. Lama, G. Gentile, P. Cerruti, V. Ambrogi, X. Fernández-Francos, S. De la Flor, Thermally-triggered free-standing shape-memory actuators. Eur. Polym. J. 1(97), 241–252 (2017).  https://doi.org/10.1016/j.eurpolymj.2017.10.006 CrossRefGoogle Scholar
  9. 9.
    W.M. Huang, B. Yang, L. An, C. Li, Y.S. Chan, Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism. Appl. Phys. Lett. 86(11), 114105 (2005).  https://doi.org/10.1063/1.1880448 CrossRefGoogle Scholar
  10. 10.
    Z. Cheng, T. Wang, X. Li, Y. Zhang, H. Yu, NIR–Vis–UV light-responsive actuator films of polymer-dispersed liquid crystal/graphene oxide nanocomposites. ACS Appl. Mater. Interfaces. 7(49), 27494–27501 (2015).  https://doi.org/10.1021/acsami.5b09676 CrossRefGoogle Scholar
  11. 11.
    X. Liu, H. Li, Q. Zeng, Y. Zhang, H. Kang, H. Duan, Y. Guo, H. Liu, Electro-active shape memory composites enhanced by flexible carbon nanotube/graphene aerogels. J. Mater. Chem. A 3(21), 11641–11649 (2015).  https://doi.org/10.1039/C5TA02490K CrossRefGoogle Scholar
  12. 12.
    Y. Xu, D. Chen, Self-healing polyurethane/attapulgite nanocomposites based on disulfide bonds and shape memory effect. Mater. Chem. Phys. 195, 40–48 (2017)CrossRefGoogle Scholar
  13. 13.
    X.J. Han, Z.Q. Dong, M.M. Fan, Y. Liu, J.H. li, Y.F. Wang, Q.J. Yuan, B.J. Li, S. Zhang, pH-induced shape-memory polymers. Macromol Rapid Commun 33(12), 1055–1060 (2012).  https://doi.org/10.1002/marc.201200153 CrossRefGoogle Scholar
  14. 14.
    F. Cao, S.C. Jana, Nanoclay-tethered shape memory polyurethane nanocomposites. Polymer 48(13), 3790–3800 (2007).  https://doi.org/10.1016/j.polymer.2007.04.027 CrossRefGoogle Scholar
  15. 15.
    J.H. Park, T.D. Dao, H.I. Lee, H.M. Jeong, B.K. Kim, Properties of graphene/shape memory thermoplastic polyurethane composites actuating by various methods. Materials 7(3), 1520–1538 (2014).  https://doi.org/10.3390/ma7031520 CrossRefGoogle Scholar
  16. 16.
    J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Graphene-based polymer nanocomposites. Polymer 52(1), 5–25 (2011)CrossRefGoogle Scholar
  17. 17.
    T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H. Lee, Recent advances in graphene based polymer composites. Prog. Polym. Sci. 35(11), 1350–1375 (2010)CrossRefGoogle Scholar
  18. 18.
    R. Purohit, K.K. Patel, G.K. Gupta, R.S. Rana, Development of Ni–Ti shape memory alloys through novel powder metallurgy route and effect of rolling on their properties. Mater. Today: Proc. 4(4), 5330–5335 (2017).  https://doi.org/10.1016/j.matpr.2017.05.043 CrossRefGoogle Scholar
  19. 19.
    H. Zhang, Z. Chen, Z. Zheng, X. Zhu, H. Wang, Shape memory polymer hybrids of SBS/dl-PLA and their shape memory effects. Mater. Chem. Phys. 137(3), 750–755 (2013)CrossRefGoogle Scholar
  20. 20.
    A.T. Karttunen, R. Von Hertzen, Polymer cover induced self-excited vibrations of nipped rolls. J. Sound Vib. 330(16), 3959–3972 (2011)CrossRefGoogle Scholar
  21. 21.
    H. Du, Z. Song, J. Wang, Z. Liang, Y. Shen, F. You, Microwave-induced shape-memory effect of silicon carbide/poly (vinyl alcohol) composite. Sens. Actuators A 1(228), 1–8 (2015).  https://doi.org/10.1016/j.sna.2015.01.012 CrossRefGoogle Scholar
  22. 22.
    K.K. Patel, R. Purohit, Improved shape memory and mechanical properties of microwave-induced thermoplastic polyurethane/Graphene nanoplatelets composites. Sens. Actuators A 285, 17–24 (2018)CrossRefGoogle Scholar
  23. 23.
    C.Y. Lee, C.C. Chen, T.H. Yang, C.J. Lin, Structural vibration control using a tunable hybrid shape memory material vibration absorber. J. Intell. Mater. Syst. Struct. 23(15), 1725–1734 (2012)CrossRefGoogle Scholar
  24. 24.
    Ł. Piszczyk, P. Kosmela, M. Strankowski, Elastic polyurethane foams containing graphene nanoplatelets. Adv. Polym. Technol. 37(6), 1625–1634 (2018)CrossRefGoogle Scholar
  25. 25.
    S.K. Yadav, J.W. Cho, Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites. Appl. Surf. Sci. 266, 360–367 (2013)CrossRefGoogle Scholar
  26. 26.
    D. Cai, J. Jin, K. Yusoh, R. Rafiq, M. Song, High performance polyurethane/functionalized graphene nanocomposites with improved mechanical and thermal properties. Compos. Sci. Technol. 72(6), 702–707 (2012)CrossRefGoogle Scholar
  27. 27.
    B. Yuan, C. Bao, L. Song, N. Hong, K.M. Liew, Y. Hu, Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chem. Eng. J. 237, 411–420 (2014)CrossRefGoogle Scholar
  28. 28.
    K.K. Patel, R. Purohit, Dispersion of SiO2 nano particles on epoxy based polymer nano composites and its characterization. Orient. J. Chem. 34(6), 2998–3003 (2018)CrossRefGoogle Scholar
  29. 29.
    Y. Zhang, X. Jiang, R. Wu, W. Wang, Multi‐stimuli responsive shape memory polymers synthesized by using reaction‐induced phase separation. J. Appl. Polym. Sci. 133, 43534 (2016)Google Scholar
  30. 30.
    K.K. Patel, R. Purohit, S.A.R. Hashmi, R.K. Gupta, S.K. Dwivedi, Development of nano SiO2 particles dispersed shape memory epoxy composites. Appl. Innov. Res. (AIR) 1(1), 21–24 (2019)Google Scholar

Copyright information

© The Institution of Engineers (India) 2019

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentMaulana Azad National Institute of TechnologyBhopalIndia

Personalised recommendations