Advertisement

Investigations on Wire Electric Discharge Machining and Mechanical Behavior of Al 7075/Nano-SiC Composites

  • S. SureshEmail author
  • D. Sudhakara
Original Contribution
  • 37 Downloads

Abstract

In this research work, the impact of WEDM parameters like gap voltage, wire feed, pulse-off time, and pulse-on time on surface roughness (Ra) and MRR (material removal rate) in metal matrix nanocomposites that are composed of Al7075 and nano-silicon carbide (SiC) with the particle dimension of 50 nm is investigated. The aluminum 7075 is reinforced by using nano-SiC with various weight percentages (2.0%, 4.0%, and 6.0 wt%). Magnesium (1.5%) is incorporated to improve the wettability of the MMNCs. The experimentations are studied by means of DOE technique applying L9 OA. The final outcomes were examined using response graphs. And also, the final outcomes are compared with unreinforced aluminum 7075. From the present analysis, it is determined that various blends of WEDM parameters are necessitated in order to accomplish lower Ra and higher MRR for Al7075/SiC nanocomposites. Basically, it is noticed that by increasing wt% of SiC leads to increased Ra and decreased MRR. The outcomes of these investigations are useful for aerospace, automobile industries to select suitable wire EDM parameters to machine MMNCs of Al7075 reinforcement with SiC nanoparticles at different weight portions.

Keywords

Al 7075 Nano-SiC WEDM MRR Ra 

Notes

Acknowledgment

The corresponding author wishes to thank the Department of Mechanical Engineering, Siddartha Institute of Science and Technology (Autonomous), Puttur, India, for providing facilities and necessary support in conducting experiments and discussion in the research work.

Compliance with Ethical Standards

Conflicts of interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    S.C. Baradeswaran, A. Vettivel, N. Elaya Perumal, R. Selvakumar, F. Issac, Experimental investigation on mechanical behavior, modeling, and optimization of wear parameters of B4C and graphite reinforced aluminum hybrid composites. Mater. Des. 63, 620–632 (2014)CrossRefGoogle Scholar
  2. 2.
    C.R. Dandekar, Y.C. Shin, Experimental evaluation of laser-assisted machining of silicon carbide particle-reinforced aluminum matrix composites. Int. J. Adv. Manuf. Technol. 66, 1603–1610 (2013)CrossRefGoogle Scholar
  3. 3.
    N.G. Patil, P.K. Brahmankar, D.G. Thakur, On the effects of wire electrode and ceramic volume fraction in wire electrical discharge machining of ceramic particulate reinforced aluminum matrix composites. Procedia CIRP 42, 286–291 (2016)CrossRefGoogle Scholar
  4. 4.
    J. Zhao, J.C. Jie, C. Fei, C. Hang, T. Li, Z. Cao, Effect of immersion Ni plating on interface microstructure and mechanical properties of Al/Cu bimetal. Trans. Nonferrous Met. Soc. China 24, 1659–1665 (2014)CrossRefGoogle Scholar
  5. 5.
    D. Satish Kumar, M. Kanthababu, V. Vajjiravelu, R. Anburaj, N.T. Sundarrajan, H. Arul, Investigation of wire electrical discharge machining characteristics of Al6063/SiCp composites. Int. J. Adv. Manuf. Technol. 56(9–12), 975–986 (2011)CrossRefGoogle Scholar
  6. 6.
    H.K. Garg, K. Verma, A. Manna, R. Kumar, Hybrid Metal Matrix Composites and a further improvement in their machinability—a review. Int. J. Latest Res. Sci. Technol. 1(1), 36–44 (2012)Google Scholar
  7. 7.
    B.R. Thella, A.G. Krishna, Selection of optimal process parameters in WEDM while machining Al7075/SiCp metal matrix composites. Int. J. Adv. Manuf. Technol. 73(1–4), 299–314 (2014)Google Scholar
  8. 8.
    K.B. Vijay, S. Dharminder, S. Puneet, Research work on composite epoxy matrix and Ep polyester-reinforced material. Int. J. Eng. Res. Technol. 2(1), 1–20 (2013)CrossRefGoogle Scholar
  9. 9.
    B.S. Yigezu, P.K. Jha, M.M. Mahapatra, The key attributes of synthesizing ceramic particulate reinforced Al-based matrix composites through stir casting process: a review. Mater. Manuf. Processes 28(9), 969–979 (2013)Google Scholar
  10. 10.
    Y.C. Shin, C. Dandekar, in Mechanics and modeling of Chip Formation in Machining of MMC, ed. by J.P. Davim, Machining of Metal Matrix Composites (Springer-Verlag London Limited, 2012)  https://doi.org/10.1007/978-0-85729-938-3-1
  11. 11.
    U. Umer, M. Ashfaq, J.A. Qudeiri, H.M.A. Hussein, S.N. Danish, A.R. Al-Ahmari, Modeling machining of particle-reinforced aluminum-based metal matrix composites using cohesive zone elements. Int. J. Adv. Manuf. Technol. 78, 1171–1179 (2015)CrossRefGoogle Scholar
  12. 12.
    A. Pramanik, Developments in the non-traditional machining of particle reinforced metal matrix composites. Int. J. Mach. Tools Manuf 86, 44–61 (2014)CrossRefGoogle Scholar
  13. 13.
    B.C. Kandpala, J. Kumar, H. Singh, Machining of aluminum metal matrix composites with electrical discharge machining—a review. Mater. Today Proc. 2, 1665–1671 (2015)CrossRefGoogle Scholar
  14. 14.
    A. Kumar, D.K. Bagal, K.P. Maity, Numerical modeling of wire electrical discharge machining of superalloy Inconel 718. Proc. Eng. 97, 1512–1523 (2014)CrossRefGoogle Scholar
  15. 15.
    S. Prashanth, R.B. Veeresha, S.M. Shashidhara, U.S. Mallikarjun, A.G. Shivasiddaramaiah, A study on machining characteristics of Al6061-SiC metal matrix composite through wire—cut electro discharge machining. Mater. Today Proc. 4(10), 10779–10785 (2017)CrossRefGoogle Scholar
  16. 16.
    Y. Pachaury, P. Tandon, An overview of electric discharge machining of ceramics and ceramic-based composites. J. Manuf. Process. 25, 369–390 (2017)CrossRefGoogle Scholar
  17. 17.
    A. Pramanik, A.K. Basak, Degradation of wire electrode during electrical discharge machining of metal matrix composites. Wear 346–347, 124–131 (2016)CrossRefGoogle Scholar
  18. 18.
    M. Hourmand, S. Farahany, A.A.D. Sarhan, M.Y. Noordin, Investigating the electrical discharge machining (EDM) parameter effects on Al-Mg2Si metal matrix composite (MMC) for high material removal rate (MRR) and less EWR–RSM approach. Int. J. Adv. Manuf. Technol. 77, 831–838 (2015)CrossRefGoogle Scholar
  19. 19.
    S.K. Lalmuan, S. Das, M. Chandrasekaran, S.K. Tamang, Machining investigation on hybrid metal matrix composites—a review. Mater. Today Proc. 4(8), 8167–8175 (2017)CrossRefGoogle Scholar
  20. 20.
    S. Mohanty, B.C. Routara, A review on machining of metal matrix composites using nano-particle mixed dielectric in electro-discharge machining. Int. J. Automot. Mech. Eng. 13(2), 3518–3539 (2016)CrossRefGoogle Scholar
  21. 21.
    G. Talla, D.K. Sahoo, S. Gangopadhyay, C.K. Biswas, Modeling and multi-objective optimization of powder mixed electric discharge machining process of aluminum/alumina metal matrix composite. Eng. Sci. Technol. Int. J. 18, 369–373 (2015)CrossRefGoogle Scholar
  22. 22.
    D.U. Kumar, K. Rao, S. Rajesh, Modelling of process parameters on surface roughness with wire EDM on aluminium metal matrix composite. Int. J. Mech. Eng. Comput. Appl. 3(3), 744–748 (2015)Google Scholar
  23. 23.
    P. Sivaprakasam, P. Hariharan, S. Gowri, Optimization of micro-WEDM process of aluminum matrix composite (A413-B4C): a response surface approach. Mater. Manuf. Process. 28, 1340–1347 (2013)CrossRefGoogle Scholar
  24. 24.
    P. Shandilya, P.K. Jain, N.K. Jain, Prediction of surface roughness during wire electrical discharge machining of SiCp/6061 Al metal matrix composite. Int. J. Ind. Syst. Eng. 12(3), 301–315 (2012)Google Scholar
  25. 25.
    H. Singh, H. Kumar, Review on wire electrical discharge machining (WEDM) of aluminum matrix composites. Int. J. Mech. Product. Eng., ISSN: 2320-2092 3(10) (2015)Google Scholar
  26. 26.
    J.W. Liu, T.M. Yue, Z.N. Guo, Y.J. Zhang, Single pulse studies of the electrical discharge machining of metal matrix composite materials. Mater. Res. Innov. 19(supp 5), S5-137–S5-141 (2015)CrossRefGoogle Scholar
  27. 27.
    K.B. Mardi, A.R. Dixit, A. Mallick, Studies on non-traditional machining of metal matrix composites. Mater. Today Proc. 4(8), 8226–8239 (2017)CrossRefGoogle Scholar
  28. 28.
    W. Zhenlong, G. Xuesong, C. Guanxin, W. Yukui, Surface integrity associated with SiC/Al particulate composite by micro-wire electrical discharge machining. Mater. Manuf. Process. 29, 532–539 (2014)CrossRefGoogle Scholar
  29. 29.
    S. Lal, S. Kumar, ZA Khan, AN Siddiquee, Multi-response optimization of wire electrical discharge machining process parameters for Al7075/Al2O3/SiC hybrid composite using Taguchi-based grey relational analysis. J. Eng. Manuf. 229(2), 229–237 (2015)CrossRefGoogle Scholar
  30. 30.
    J.M. Pujara, K.D. Kothari, A.V. Gohil, Process parameter optimization for MRR and surface roughness during machining LM6 Aluminum MMC on WEDM. Adv. Eng. Forum 20, 42–50 (2017)CrossRefGoogle Scholar
  31. 31.
    A. Sharma, M.P. Garg, K.K. Goyal, A. Kumar, Investigation of wire electrical discharge machining of ZrSiO4p/Al 6063 MMC. Int. J. Mach. Mach. Mater. 18(4), 392–411 (2016)Google Scholar

Copyright information

© The Institution of Engineers (India) 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSiddartha Institute of Science and TechnologyPutturIndia

Personalised recommendations