Advertisement

Merging of Solidus and Liquidus Curves in Copper–Nickel Nanophase Diagram due to Segregation

  • H. R. Aniruddha RamEmail author
  • Krishna Venkatesh
  • K. Gopalakrishna
  • K. T. Kashyap
  • K. S. Sridhar
Original Contribution
  • 11 Downloads

Abstract

Phase diagram was predicted for Cu–Ni nanoalloy system using regular solution considering various models with and without segregation. Phase diagrams for nanoparticles are affected by the melting point of nanoparticles, and various models are available to predict the melting point for nanoparticles. Hence, choosing the right model helps in accurate nanophase diagram predictions. Three models are considered to predict the melting point of nanoparticles and phase diagrams. Thermodynamic model, enthalpy and entropy model and crystal structure models were compared for their melting points and phase diagram predictions. These three models were then compared with experimental results carried out by Sopousek et al. for a 26 nm particle size. It was found that for a 11.1 Wt% Ni nanoalloy, thermodynamic model accurately predicts the phase diagram with an error of 0.09% compared to enthalpy and entropy model. Thermodynamic model is also known as the surface-phonon instability model which considers various factors like surface phonons, atoms and intrinsic defects in the nanoparticle and hence accurately predicts the melting point and the phase diagram. Further segregation effects were also considered, and for the first time, a comparison between three models is reported which shows significant merging of solidus and liquidus curves in thermodynamic model and enthalpy and entropy model using William–Nason’s model.

Keywords

Copper–nickel Phase diagrams Nanoparticles CALPHAD MATLAB 

Notes

Acknowledgements

The authors thankfully acknowledge the financial support provided by the Institution of Engineers (India) (Project ID RDDR2017014) for carrying out research and development work in this subject. The authors would like to express deepest gratitude to late| Dr. B.N.V.Subrahmanya, Smt. B.V.Seetha, Shri M Narasimhan, Shri B.K.Ramesh, Shri B.V.Venkatasubrahmanya and all the other trustees and management, Principal and HOD (Department of Mechanical Engineering) of Jyothy Charitable trust and CIIRC for their immense support in all aspects. The authors also thank Visvesvaraya Technological University, Belgaum, and the management team and Principal of PES Institute of Technology and Siddaganga Institute of Technology for their assistance.

References

  1. 1.
    W.A. Jesser, G.J. Shiflet, G.L. Allen, J.L. Crawford, Equilibrium phase diagrams of isolated nano-phases. Mater. Res. Innov. (1999).  https://doi.org/10.1007/s100190050087 Google Scholar
  2. 2.
    N. Saunders, A.P. Miodownik, Evaluation of glass forming ability in binary and ternary metallic alloy systems—an application of thermodynamic phase diagram calculations. Mater. Sci. Technol. (2014).  https://doi.org/10.1179/mst.1988.4.9.768 Google Scholar
  3. 3.
    H.J. Seifert, H.L. Lukas, F. Aldinger, Development of Si–B–C–N ceramics supported by phase diagrams and thermochemistry. Ber. Der Bunsenges. Für Phys. Chem. (2012).  https://doi.org/10.1002/bbpc.19981020942 Google Scholar
  4. 4.
    N.A. Pertsev, A.G. Zembilgotov, A.K. Tagantsev, Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Phys. Rev. Lett. (1998).  https://doi.org/10.1103/physrevlett.80.1988 Google Scholar
  5. 5.
    R. Klenk, T. Walter, H.W. Schock, D. Cahen, A model for the successful growth of polycrystalline films of CuInSe2 by multisource physical vacuum evaporation. Adv. Mater. (1993).  https://doi.org/10.1002/adma.19930050209 Google Scholar
  6. 6.
    G. Inden, The role of magnetism in the calculation of phase diagrams. Phys B+C (1981).  https://doi.org/10.1016/0378-4363(81)91004-4 Google Scholar
  7. 7.
    D. Li, L. Liu, Y. Zhang, C. Ye, X. Ren, Y. Yang et al., Phase diagram calculation of high chromium cast irons and influence of its chemical composition. Mater. Des. (2009).  https://doi.org/10.1016/j.matdes.2008.04.061 Google Scholar
  8. 8.
    A. San-Miguel, Nanomaterials under high-pressure. Chem. Soc. Rev. (2006).  https://doi.org/10.1039/b517779k Google Scholar
  9. 9.
    V. Bobnar, Z. Kutnjak, R. Pirc, A. Levstik, Electric-field-temperature phase diagram of the relaxor ferroelectric lanthanum-modified lead zirconate titanate. Phys. Rev. B Condens. Matter Mater. Phys. (1999).  https://doi.org/10.1103/physrevb.60.6420 Google Scholar
  10. 10.
    M. Wautelet, On the shape dependence of the melting temperature of small particles. Phys. Lett. Sect. Gen. Solid State Phys. 246, 341–342 (1998).  https://doi.org/10.1016/S0375-9601(98)00538-6 Google Scholar
  11. 11.
    M. Wautelet, J.P. Dauchot, M. Hecq, On the phase diagram of non-spherical nanoparticles. J. Phys. Condens. Matter (2003).  https://doi.org/10.1088/0953-8984/15/21/313 Google Scholar
  12. 12.
    R. Vallée, M. Wautelet, J.P. Dauchot, M. Hecq, Size and segregation effects on the phase diagrams of nanoparticles of binary systems. Nanotechnology (2001).  https://doi.org/10.1088/0957-4484/12/1/312 Google Scholar
  13. 13.
    M. Wautelet, J.P. Dauchot, M. Hecq, Size effects on the phase diagrams of nanoparticles of various shapes. Mater. Sci. Eng. C (2003).  https://doi.org/10.1016/s0928-4931(02)00266-7 Google Scholar
  14. 14.
    P.G. Bruce, B. Scrosati, J. Tarascon, Lithium batteries nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. (2008).  https://doi.org/10.1002/anie.200702505 Google Scholar
  15. 15.
    X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem. Rev. (2007).  https://doi.org/10.1021/cr0500535 Google Scholar
  16. 16.
    G. Guisbiers, S. Mejia-Rosales, S. Khanal, F. Ruiz-Zepeda, R.L. Whetten, M. José-Yacaman, Gold-copper nano-alloy, “tumbaga”, in the era of nano: phase diagram and segregation. Nano Lett. (2014).  https://doi.org/10.1021/nl503584q Google Scholar
  17. 17.
    E. Sutter, P. Sutter, Phase diagram of nanoscale alloy particles used for vapor–liquid–solid growth of semiconductor nanowires. Nano Lett. (2008).  https://doi.org/10.1021/nl0719630 Google Scholar
  18. 18.
    M. Asadikiya, H. Sabarou, M. Chen, Y. Zhong, Phase diagram for a nano-yttria-stabilized zirconia system. RSC Adv. (2016).  https://doi.org/10.1039/c5ra24330k Google Scholar
  19. 19.
    T. Ivas, A.N. Grundy, E. Povoden-Karadeniz, L.J. Gauckler, Phase diagram of CeO 2CoO for nano-sized powders. CALPHAD Comput. Coupling Phase Diagr. Thermochem. (2012).  https://doi.org/10.1016/j.calphad.2011.10.005 Google Scholar
  20. 20.
    H.L. Lukas, S.G. Fries, B. Sundman, Computational thermodynamics: the CALPHAD method (Cambridge University Press, Cambridge, 2007).  https://doi.org/10.1017/cbo9780511804137 CrossRefzbMATHGoogle Scholar
  21. 21.
    Z.K. Liu, First-principles calculations and CALPHAD modeling of thermodynamics. J. Phase Equilibria Diffus. (2009).  https://doi.org/10.1007/s11669-009-9570-6 Google Scholar
  22. 22.
    B. Sundman, J. Ågren, A regular solution model for phases with several components and sublattices, suitable for computer applications. J. Phys. Chem. Solids (1981).  https://doi.org/10.1016/0022-3697(81)90144-x Google Scholar
  23. 23.
    A. van de Walle, G. Ceder, Automating first-principles phase diagram calculations. J. Phase Equilibria (2002).  https://doi.org/10.1361/105497102770331596 Google Scholar
  24. 24.
    G. Ouyang, X. Tan, C.X. Wang, G.W. Yang, Solid solubility limit in alloying nanoparticles. Nanotechnology 1, 2–3 (2006).  https://doi.org/10.1088/0957-4484/17/16/042 Google Scholar
  25. 25.
    M. Cui, H. Lu, H. Jiang, Z. Cao, X. Meng, Phase diagram of continuous binary nanoalloys: size, shape, and segregation effects. Sci. Rep. (2017).  https://doi.org/10.1038/srep41990 Google Scholar
  26. 26.
    G. Guisbiers, R. Mendoza-Cruz, L. Bazán-Díaz, J.J. Velázquez-Salazar, R. Mendoza-Perez, J.A. Robledo-Torres et al., Electrum, the gold-silver alloy, from the bulk scale to the nanoscale: synthesis, properties, and segregation rules. ACS Nano (2016).  https://doi.org/10.1021/acsnano.5b05755 Google Scholar
  27. 27.
    G. Guisbiers, S. Khanal, F. Ruiz-Zepeda, J. Roque De La Puente, M. José-Yacaman, Cu–Ni nano-alloy: mixed, core-shell or Janus nano-particle? Nanoscale 6, 14630–14635 (2014).  https://doi.org/10.1039/c4nr05739b CrossRefGoogle Scholar
  28. 28.
    S.H. Overbury, P.A. Bertrand, G.A. Somorjai, The surface composition of binary systems. Prediction of surface phase diagrams of solid solutions. Chem. Rev. (1975).  https://doi.org/10.1021/cr60297a001 Google Scholar
  29. 29.
    S. an Mey, Thermodynamic re-evaluation of the CuNi system. CALPHAD (1992).  https://doi.org/10.1016/0364-5916(92)90022-p Google Scholar
  30. 30.
    A. Christensen, P. Stoltze, J.K. Norskov, Size dependence of phase separation in small bimetallic clusters. J. Phys. Condens. Matter (1995).  https://doi.org/10.1088/0953-8984/7/6/008 Google Scholar
  31. 31.
    J. Lee, J. Park, T. Tanaka, Effects of interaction parameters and melting points of pure metals on the phase diagrams of the binary alloy nanoparticle systems: a classical approach based on the regular solution model. CALPHAD Comput. Coupling Phase Diagr. Thermochem. (2009).  https://doi.org/10.1016/j.calphad.2008.11.001 Google Scholar
  32. 32.
    J. Park, J. Lee, Phase diagram reassessment of Ag–Au system including size effect. CALPHAD Comput. Coupling Phase Diagr. Thermochem. (2008).  https://doi.org/10.1016/j.calphad.2007.07.004 Google Scholar
  33. 33.
    M. Wautelet, J.P. Dauchot, M. Hecq, Phase diagrams of small particles of binary systems: a theoretical approach. Nanotechnology (2000).  https://doi.org/10.1088/0957-4484/11/1/302 Google Scholar
  34. 34.
    J. Ross, R.P. Andres, Melting temperature of small clusters. Surf. Sci. (1981).  https://doi.org/10.1016/0039-6028(81)90175-8 Google Scholar
  35. 35.
    M. Wautelet, Estimation of the variation of the melting temperature with the size of small particles, on the basis of a surface-phonon instability model. J. Phys. D Appl. Phys. (1991).  https://doi.org/10.1088/0022-3727/24/3/017 Google Scholar
  36. 36.
    P. Puri, V. Yang, Effect of particle size on melting of aluminum at nano scales. J. Phys. Chem. C (2007).  https://doi.org/10.1021/jp0724774 Google Scholar
  37. 37.
    R.J.C. Brown, R.F.C. Brown, Melting point and molecular symmetry. J. Chem. Educ. (2009).  https://doi.org/10.1021/ed077p724 Google Scholar
  38. 38.
    J. Sun, S.L. Simon, The melting behavior of aluminum nanoparticles. Thermochim. Acta (2007).  https://doi.org/10.1016/j.tca.2007.07.007 Google Scholar
  39. 39.
    M. Schmidt, R. Kusche, B. Von Issendorff, H. Haberland, Irregular variations in the melting point of size-selected atomic clusters. Nature (1998).  https://doi.org/10.1038/30415 Google Scholar
  40. 40.
    Q. Jiang, S. Zhang, M. Zhao, Size-dependent melting point of noble metals. Mater. Chem. Phys. (2003).  https://doi.org/10.1016/s0254-0584(03)00201-3 Google Scholar
  41. 41.
    M. Wautelet, A.S. Shirinyan, Thermodynamics: nano vs. macro. Pure Appl. Chem. (2009).  https://doi.org/10.1351/pac-con-08-07-04 Google Scholar
  42. 42.
    G. Guisbiers, G. Abudukelimu, Influence of nanomorphology on the melting and catalytic properties of convex polyhedral nanoparticles. J. Nanoparticle Res. (2013).  https://doi.org/10.1007/s11051-013-1431-x Google Scholar
  43. 43.
    H.M. Lu, F.Q. Han, X.K. Meng, Size-dependent thermodynamic properties of metallic nanowires. J. Phys. Chem. B. (2008).  https://doi.org/10.1021/jp802888t Google Scholar
  44. 44.
    K.K. Nanda, S.N. Sahu, S.N. Behera, Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys. Rev. A Mol. Opt. Phys. (2002).  https://doi.org/10.1103/physreva.66.013208 Google Scholar
  45. 45.
    A.S. Shirinyan, M. Wautelet, Phase separation in nanoparticles. Nanotechnology (2004).  https://doi.org/10.1088/0957-4484/15/12/004 Google Scholar
  46. 46.
    Q. Jiang, H.X. Shi, M. Zhao, Melting thermodynamics of organic nanocrystals. J. Chem. Phys. (1999).  https://doi.org/10.1063/1.479489 Google Scholar
  47. 47.
    G. Guisbiers, L. Buchaillot, Modeling the melting enthalpy of nanomaterials. J. Phys. Chem. C (2009).  https://doi.org/10.1021/jp809338t Google Scholar
  48. 48.
    M. Singh, S. Lara, S. Tlali, Effects of size and shape on the specific heat, melting entropy and enthalpy of nanomaterials. J. Taibah Univ. Sci. (2016).  https://doi.org/10.1016/j.jtusci.2016.09.011 Google Scholar
  49. 49.
    W. Qi, Nanoscopic thermodynamics. Acc. Chem. Res. (2016).  https://doi.org/10.1021/acs.accounts.6b00205 Google Scholar
  50. 50.
    L.H. Liang, D. Liu, Q. Jiang, Size-dependent continuous binary solution phase diagram. Nanotechnology (2003).  https://doi.org/10.1088/0957-4484/14/4/306 Google Scholar
  51. 51.
    G. Li, Q. Wang, D. Li, X. Lü, J. He, Size and composition effects on the melting of bimetallic Cu–Ni clusters studied via molecular dynamics simulation. Mater. Chem. Phys. (2009).  https://doi.org/10.1016/j.matchemphys.2008.10.031 Google Scholar
  52. 52.
    H. Liao, A. Fisher, Z.J. Xu, Surface segregation in bimetallic nanoparticles: a critical issue in electrocatalyst engineering. Small (2015).  https://doi.org/10.1002/smll.201403380 Google Scholar
  53. 53.
    B.N. Wanjala, J. Luo, B. Fang, D. Mott, C.J. Zhong, Gold-platinum nanoparticles: alloying and phase segregation. J. Mater. Chem. (2011).  https://doi.org/10.1039/c0jm02682d Google Scholar
  54. 54.
    L. Deng, W. Hu, H. Deng, S. Xiao, Surface segregation and structural features of bimetallic Au–Pt nanoparticles. J. Phys. Chem. C (2010).  https://doi.org/10.1021/jp100194p Google Scholar
  55. 55.
    L. Peng, E. Ringe, R.P. Van Duyne, L.D. Marks, Segregation in bimetallic nanoparticles. Phys. Chem. Chem. Phys. (2015).  https://doi.org/10.1039/c5cp01492a Google Scholar
  56. 56.
    D.R. Gaskell, Introduction to the thermodynamics of materials (CRC Press, Hoboken, 1994).  https://doi.org/10.1115/1.2901487 Google Scholar
  57. 57.
    J. Sopousek, J. Vrestal, J. Pinkas, P. Broz, J. Bursik, A. Styskalik et al., Cu–Ni nanoalloy phase diagram—prediction and experiment. CALPHAD Comput. Coupling Phase Diagr. Thermochem. (2014).  https://doi.org/10.1016/j.calphad.2013.11.004 Google Scholar
  58. 58.
    T.T. Li, C. He, W.X. Zhang, M. Cheng, Structural and melting properties of Cu–Ni clusters: a simulation study. J. Alloys Compd. (2018).  https://doi.org/10.1016/j.jallcom.2018.04.145 Google Scholar
  59. 59.
    J. Pinkas, J. Sopoušek, P. Brož, V. Vykoukal, J. Buršík, J. Vřešťál, Synthesis, structure, stability and phase diagrams of selected bimetallic silver- and nickel-based nanoparticles. CALPHAD Comput. Coupling Phase Diagr. Thermochem. (2019).  https://doi.org/10.1016/j.calphad.2018.11.013 Google Scholar
  60. 60.
    F.L. Williams, D. Nason, Binary alloy surface compositions from bulk alloy thermodynamic data. Surf. Sci. (1974).  https://doi.org/10.1016/0039-6028(74)90177-0 Google Scholar

Copyright information

© The Institution of Engineers (India) 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringCIIRC, Jyothy Institute of TechnologyBangaloreIndia
  2. 2.CIIRC, Jyothy Institute of TechnologyBangaloreIndia
  3. 3.Department of Mechanical EngineeringSiddaganga Institute of TechnologyTumakuruIndia
  4. 4.Department of Mechanical EngineeringPES Institute of TechnologyBangaloreIndia

Personalised recommendations