Advertisement

Suppression of Tool Vibration in Boring Process: A Review

  • G. Lawrance
  • P. Sam PaulEmail author
  • A. S. Varadarajan
  • X. Ajay Vasanth
  • S. Benny Raj
Review Paper
  • 80 Downloads

Abstract

In boring process, tool vibration is an important parameter which results in progressive tool wear, poor surface finish and cutting tool damage. This tool vibration was reduced by passive, semi-active and active techniques which are used by various researchers in the past. In this paper, various techniques employed to prevent tool vibration in boring operation are reviewed, analyzed and presented. It was inferred that the control of tool vibration was effective by utilizing appropriate damping mechanism in the boring process. Also, from the overall review of the literature, it was observed that as the tool wear started to progress, the tool vibration gets increased which leads to failure of the tool. In this review paper, scope of developing a damper where tool vibration can be suppressed by varying the damping ability based on requirement was established.

Keywords

Tool vibration Boring process Active damper Semi-active damper Passive damper Stability 

Notes

Acknowledgements

The authors are grateful to Department of Mechanical Engineering, Karunya Institute of Technology and Sciences for facilitating and supporting this work.

References

  1. 1.
    G. Lawrance, P. Sam Paul, A.S. Varadarajan, A.P. Praveen, X. Ajay Vasanth, Attenuation of vibration in boring tool using spring controlled impact damper. Int. J. Interact. Des. Manuf. 11(4), 903–915 (2017)Google Scholar
  2. 2.
    K.A. Risbood, U.S. Dixit, A.D. Sahasrabudhe, Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibration in turning process. J. Mater. Process. Technol. 132(1–3), 203–214 (2003)Google Scholar
  3. 3.
    F. Taylor, On the art of cutting metals. Trans. ASME 28, 150–156 (1907)Google Scholar
  4. 4.
    R.N. Arnold, Cutting tools research: report of subcommittee on carbide tools: the mechanism of tool vibration in the cutting of steel. Proc. Inst. Mech. Eng. 154(1), 261–284 (1946)Google Scholar
  5. 5.
    J. Tlusty, M. Polacek, The stability of machine tools against self-excited vibrations in machining, in Proceedings of the ASME International (1963)Google Scholar
  6. 6.
    S.A. Tobias, W. Fishwick, The chatter of lathe tools under orthogonal cutting conditions. Trans. ASME 80, 1079–1088 (1958)Google Scholar
  7. 7.
    G. Quintana, J. Ciurana, Chatter in machining processes: a review. Int. J. Mach. Tools Manuf. 51(5), 363–376 (2011)Google Scholar
  8. 8.
    M. Wiercigroch, E. Budak, Sources of nonlinearities, chatter generation and suppression in metal cutting. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 359, 663–693 (2001)zbMATHGoogle Scholar
  9. 9.
    B. Moetakef-Imani, N.Z. Yussefian, Dynamic simulation of boring process. Int. J. Mach. Tools Manuf. 49(14), 1096–1103 (2009)Google Scholar
  10. 10.
    P.J. Waghmare, R.V. Patil, G.S. Waghmare, A review on vibration mitigation of boring bar using passive damping techniques. Int. J. Res. Eng. Technol. 4(7), 138–141 (2015)Google Scholar
  11. 11.
    D.A. Harris, Noise Control Manual: Guidelines for Problem-Solving in the Industrial/Commercial Acoustical Environment (Springer, New York, 1991)Google Scholar
  12. 12.
    P. Sam Paul, A.S. Varadarajan, S. Mohanasundaram, Effect of magnetorheological fluid on tool wear during hard turning with minimal fluid application. Arch. Civ. Mech. Eng. 15(1), 124–132 (2015)Google Scholar
  13. 13.
    I. Lazoglu, F. Atabey, Y. Altintas, Dynamic of boring processes: part III—time domain. Int. J. Mach. Tools Manuf. 42(14), 1567–1576 (2002)Google Scholar
  14. 14.
    L. Andren, L. Hakansson, A. Brandt, I. Claesson, Identification of dynamic properties of boring bar vibrations in a continuous boring operation. Mech. Syst. Signal Process. 18(4), 869–901 (2004)Google Scholar
  15. 15.
    L. Andren, L. Hakansson, A. Brandt, I. Claesson, Identification of motion of cutting tool vibration in a continuous boring operation-correlation to structural properties. Mech. Syst. Signal Process. 18(4), 903–927 (2004)Google Scholar
  16. 16.
    H. Akesson, T. Smirnova, L. Hakansson, Analysis of dynamic properties of boring bars concerning different clamping conditions. Mech. Syst. Signal Process. 23(8), 2629–2647 (2009)Google Scholar
  17. 17.
    N.B.V. Lakshmi Kumari, S. IrfanSadaq, G. Prasana Kumar, Analysis of single point cutting tool of a lathe machine using FEA. Int. J. Eng. Trends Technol. 20(5), 214–217 (2015)Google Scholar
  18. 18.
    J.R. Baker, K.E. Rouch, Stability analysis of boring bars with asymmetry. Mach. Sci. Technol. Int. J. 6(1), 81–95 (2002)Google Scholar
  19. 19.
    D.E Gilsinn, M Davies, Multi-modal nonlinear dynamics in machine tool cutting processes, in 6th Conference on Nonlinear Vibrations, Stability, and Dynamics of Structures, Blacksburg, VA (1996)Google Scholar
  20. 20.
    F. Atabey, I. Lazoglu, Y. Altintas, Mechanics of boring processes—part I. Int. J. Mach. Tools Manuf. 43(5), 463–476 (2003)Google Scholar
  21. 21.
    F. Atabey, I. Lazoglu, Y. Altintas, Mechanics of boring processes—part II—multi-insert boring heads. Int. J. Mach. Tools Manuf. 43(5), 477–484 (2003)Google Scholar
  22. 22.
    M. Siddhapura, R. Paurobally, A review of chatter vibration research in turning. Int. J. Mach. Tools Manuf. 16, 27–47 (2012)Google Scholar
  23. 23.
    D.E. Dimla Sr., The impact of cutting conditions on cutting forces and vibrations signals in turning with plane face geometry inserts. J. Mater. Process. Technol. 155-156, 1708–1715 (2004)Google Scholar
  24. 24.
    E. Budak, E. Ozlu, Analytical modeling of chatter stability in turning and boring operations: a multi-dimensional approach. CIRP Ann. 56(1), 401–404 (2007)Google Scholar
  25. 25.
    J. Yue, Creating a stability lobe diagram, in Proceedings of the IJMEInter Tech Conference, New Jersey (2006)Google Scholar
  26. 26.
    F. Kuster, P.E. Gygax, Cutting dynamics and stability of boring bars. CIRP Ann. 39(1), 361–366 (1990)Google Scholar
  27. 27.
    E. Ozlu, E. Budak, Analytical modeling of chatter stability in turning and boring operations—part i: model development. J. Manuf. Sci. Eng. 129(4), 726–732 (2007)Google Scholar
  28. 28.
    E. Ozlu, E. Budak, Analytical modeling of chatter stability in turning and boring operations—part II: experimental verification. J. Manuf. Sci. Eng. 129(4), 733–739 (2007)Google Scholar
  29. 29.
    K. Sorby, Development and optimization of vibration-damped tool holders for high length-to-diameter boring operations. High Speed Mach. 2, 51–58 (2016)Google Scholar
  30. 30.
    C. Mei, Active regenerative chatter suppression during boring manufacturing process. Robot. Comput. Integr. Manuf. 21(2), 153–158 (2005)Google Scholar
  31. 31.
    E. Ozlu, E. Budak, Analytical stability models for turning and boring operations, in Proceedings of the Second CIRP International Conference on High Performance Cutting, Vancouver, Canada (2006)Google Scholar
  32. 32.
    Y. Alammari, M. Sanati, T. Freiheit, S.S. Park, Investigation of boring bar dynamics for chatter suppression. Procedia Manuf. 1, 768–778 (2015)Google Scholar
  33. 33.
    C.V. Biju, M.S. Shunmugam, Development of a boring bar with magneto rheological fluid damping and assessment of its dynamic characteristics. J. Vib. Control 24(14), 3094–3106 (2018)Google Scholar
  34. 34.
    J.F. Rigal, C. Pupaza, C. Bedrin, A model for simulation of vibrations during boring operations of complex surfaces. CIRP Ann. 47(1), 51–54 (1998)Google Scholar
  35. 35.
    J.R. Baker, K.E. Rouch, Use of finite element structural models in analyzing machine tool chatter. Finite Elem. Anal. Des. 38(11), 1029–1046 (2002)zbMATHGoogle Scholar
  36. 36.
    G. Urbikain, A. Fernandez, L.N. Lopez de Lacalle, M.E. Gutierrez, Stability lobes for general turning operations with slender tools in the tangential direction. Int. J. Mach. Tools Manuf. 67, 35–44 (2013)Google Scholar
  37. 37.
    M. Zaeh, D. Siedl, A new method for simulation of machining performance by integrating finite element and multi-body simulation for machine tools. CIRP Ann. 56(1), 383–386 (2007)Google Scholar
  38. 38.
    P. Sam Paul, G. Lawrance, R.K. Yadav, N.V. Mohankrishnan, N. Nair, X. Ajay Vasanth, Analysis of dynamic characteristics of boring tool holder. Procedia Mater. Sci. 5, 2283–2292 (2014)Google Scholar
  39. 39.
    P. Sam Paul, A.S. Varadarajan, R. Robinson Gnanadurai, Study on the influence of fluid application parameters on tool vibration and cutting performance during turning of hardened steel. Eng. Sci. Technol. Int. J. 19(1), 241–253 (2016)Google Scholar
  40. 40.
    P. Sam Paul, A.S. Varadarajan, Performance evaluation of hard turning of AISI 4340 steel with minimal fluid application in the presence of semi-solid lubricants. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 227(7), 738–748 (2013)Google Scholar
  41. 41.
    K. Sorby, E. Sundseth, High-accuracy turning with slender boring bars. Adv. Manuf. 3(2), 105–110 (2015)Google Scholar
  42. 42.
    M.M. Sadek, B. Mills, Effect of gravity on the performance of an impact damper: part 1. Steady-state motion. J. Mech. Eng. Sci. 12(4), 268–277 (1970)Google Scholar
  43. 43.
    M.D. Thomas, W.A. Knight, M.M. Sadek, The impact damper as a method of improving cantilever boring bars. J. Eng. Ind. 97(3), 859–866 (1975)Google Scholar
  44. 44.
    C.N. Bapat, S. Sankar, Single unit impact damper in free and forced vibration. J. Sound Vib. 99(1), 85–94 (1985)Google Scholar
  45. 45.
    S. Ema, E. Marui, Suppression of chatter vibration of boring tools using impact dampers. Int. J. Mach. Tools Manuf. 40(8), 1141–1156 (2000)Google Scholar
  46. 46.
    K. Mao, M. Yu Wang, Z. Xu, T. Chen, DEM simulation of particle damping. Powder Technol. 142(2–3), 154–165 (2004)Google Scholar
  47. 47.
    R.D. Friend, V.K. Kinra, Particle impact damping. J. Sound Vib. 233(1), 93–118 (2000)Google Scholar
  48. 48.
    S.E. Olson, An analytical particle damping model. J. Sound Vib. 264(5), 1155–1166 (2003)Google Scholar
  49. 49.
    M. Saeki, Analytical study of multi-particle damping. J. Sound Vib. 281(3–5), 1133–1144 (2005)Google Scholar
  50. 50.
    Z. Xu, M. Yu Wang, T. Chenc, Particle damping for passive vibration suppression: numerical modeling and experimental investigation. J. Sound Vib. 279(3-5), 1097–1120 (2005)Google Scholar
  51. 51.
    M.S. Kumar, K.M. Mohanasundaram, B. Sathishkumar, A case study on vibration control in a boring bar using particle damping. Int. J. Eng. Sci. Technol. 3(8), 177–184 (2011)Google Scholar
  52. 52.
    S. Devaraj, D. Shivalingappa, J.R. Channankaiah, Surface quality enrichment using fine particle impact damper in boring operations. Int. J. Res. Eng. Technol. 3(2), 531–535 (2014)Google Scholar
  53. 53.
    C.V. Biju, M.S. Shunmugam, Investigation into effect of particle impact damping (PID) on surface topography in boring operation. Int. J. Adv. Manuf. Technol. 75(5-8), 1219–1231 (2014)Google Scholar
  54. 54.
    S. Chockalingam, U. Natarajan, A.G. Cyril, Damping investigation in boring bar using hybrid copper-zinc particles. J. Vib. Control 23(13), 2128–2134 (2017)Google Scholar
  55. 55.
    T.H. Kang, Chatter vibration in precision boring, in Machine Tool Development Production Engineering Resolution Conference ASME, Pittsburgh, pp. 171–189 (1963)Google Scholar
  56. 56.
    D.G. Lee, N.P. Suh, Manufacturing and testing of chatter free boring bar. CIRP Ann. 37(1), 365–368 (1988)Google Scholar
  57. 57.
    D.G. Lee, H.Y. Hwang, J.K. Kim, Design and manufacturing of a carbon fiber epoxy rotating boring bar. Compos. Struct. 60(1), 115–124 (2003)Google Scholar
  58. 58.
    Q. Song, J. Shi, Z. Liu, Y. Wan, F. Xia, Boring bar with constrained layer damper for improving process stability. Int. J. Adv. Manuf. Technol. 83(9–12), 1951–1966 (2016)Google Scholar
  59. 59.
    J.H. Griffin, A review of friction damping of turbine blade vibration. Int. J. Turbo Jet-Engines 7(3–4), 297–397 (1990)Google Scholar
  60. 60.
    R.S. Hahn, Design of Lanchester damper for elimination of metal cutting chatter. Trans. ASME 73, 331–336 (1951)Google Scholar
  61. 61.
    E. Edhi, T. Hoshi, Stabilization of high frequency chatter vibration in fine boring by friction damper. Precis. Eng. 25(3), 224–234 (2001)Google Scholar
  62. 62.
    L.M. Jansen, S.J. Dyke, Semi-active control strategies for MR dampers: a comparative study. ASCE J. Eng. Mech. 126(8), 795–803 (2000)Google Scholar
  63. 63.
    M.D. Symans, M.C. Constantinou, Semi-active control systems for seismic protection of structures: a state-of-the-art review. Eng. Struct. 21(6), 469–487 (1999)Google Scholar
  64. 64.
    J. Liu, K. Liu, A tunable electromagnetic vibration absorber: characterization and application. J. Sound Vib. 295(3-5), 708–724 (2006)Google Scholar
  65. 65.
    E.I. Rivin, H. Kang, Improvement of machining conditions for slender parts by tuned dynamic stiffness of tool. Int. J. Mach. Tools Manuf. 29(3), 361–376 (1989)Google Scholar
  66. 66.
    H. Moradia, F. Bakhtiari-Nejadb, M.R. Movahhedya, A tunable vibration absorber design to suppress chatter in boring manufacturing process. Int. Mech. Eng. Congr. Expo. ASME 9, 1943–1950 (2007)Google Scholar
  67. 67.
    H. Moradia, F. Bakhtiari-Nejadb, M.R. Movahhedya, Tuneable vibration absorber design to suppress vibrations: an application in boring manufacturing process. J. Sound Vib. 318(1–2), 93–108 (2008)Google Scholar
  68. 68.
    L. Houck, T.L. Schmitz, K.S. Smith, A tuned holder for increased boring bar dynamic stiffness. J. Manuf. Process. 13(1), 24–29 (2011)Google Scholar
  69. 69.
    T. Mohanty, Surface quality improvement using modified tool clamping in boring operation. Int. J. Res. Eng. Sci. 1(8), 33–41 (2013)Google Scholar
  70. 70.
    K. Hudha, H. Jamaluddin, P.M. Samin, R.A. Rahman, Effects of control techniques and damper constraint on the performance of a semi-active magnetorheological damper. Int. J. Veh. Auton. Syst. 3(2–4), 230–252 (2005)Google Scholar
  71. 71.
    S. Rutten, Smart Materials in Automotive Applications (Technische Universiteit, Eindhoven, 2003)Google Scholar
  72. 72.
    K. Kim, K.F. Eman, S.M. Wu, In-process control of cylindricity in boring operations. J. Eng. Ind. 109(4), 291–296 (1987)Google Scholar
  73. 73.
    H. Tanaka, F. Obata, T. Matsubara, H. Mizumoto, Active chatter suppression of slender boring bar using piezoelectric actuators. JSME Int. J. Ser. C Dyn. Control Robot. Des. Manuf. 37(3), 601–606 (1994)Google Scholar
  74. 74.
    S.G. Tewani, K.E. Rouch, B.L. Walcott, A study of cutting process stability of a boring bar with active dynamic absorber. Int. J. Mach. Tool Manuf. 35(1), 91–108 (1995)Google Scholar
  75. 75.
    D.R. Browning, I. Golioto, N.B. Thompson, Active chatter control system for long-overhang boring bars. Proc. SPIE 3044, 270–280 (1997)Google Scholar
  76. 76.
    W.M. Chiu, K.W. Chan, Design and testing of piezoelectric actuator-controlled boring bar for active compensation of cutting force induced errors. Int. J. Prod. Econ. 51(1–2), 135–148 (1997)Google Scholar
  77. 77.
    W.M. Chiu, F.W. Lam, D. Gao, An overhung boring bar servo system for on-line correction of machining error. J. Mater. Process. Technol. 122(2–3), 286–292 (2002)Google Scholar
  78. 78.
    D. Gao, Y.X. Yao, W.M. Chiu, F.W. Lam, Accuracy enhancement of a small overhung boring bar servo system by real-time error compensation. Precis. Eng. 26(4), 456–459 (2002)Google Scholar
  79. 79.
    A. Katsukia, H. Onikura, T. Sajima, A. Mohri, T. Moriyama, Y. Hamano, H. Murakamic, Development of a practical high-performance laser-guided deep-hole boring tool: improvement in guiding strategy. Precis. Eng. 35(2), 221–227 (2011)Google Scholar
  80. 80.
    A. Matsubara, M. Maeda, I. Yamaji, Vibration suppression of boring bar by piezoelectric actuators and LR circuit. CIRP Ann. 63(1), 373–376 (2014)Google Scholar
  81. 81.
    G.P. O’Neal, B.K. Min, Z.J. Pasek, Y. Korean, Integrated structural/control design of micro-positioner for boring bar tool insert. J. Intell. Mater. Syst. Struct. 12(9), 617–627 (2001)Google Scholar
  82. 82.
    G.P. O’Neal, B.K. Min, C.J. Li, Z.J. Pasek, Y. Korean, P. Szuba, Precision piezoelectric micro-positioner for line boring bar tool insert. ASME Des. Eng. Div. 97, 99–106 (1998)Google Scholar
  83. 83.
    Y. Koren, Z.J. Pasek, P. Szuba, Design of a precision, agile line boring station. CIRP Ann. Manuf. Technol. 48(1), 313–316 (1999)Google Scholar
  84. 84.
    B.K. Min, G.P. O’Neal, Y. Koran, Z. Pasek, A smart boring tool for process control. Mechatronics 12(9–10), 1097–1114 (2002)Google Scholar
  85. 85.
    G. Haiqing, L.M. King, T.B. Cher, Influence of a locally applied electro-rheological fluid layer on vibration of a simple cantilever beam. J. Intell. Mater. Syst. Struct. 4(3), 379–384 (1993)Google Scholar
  86. 86.
    S.B. Choi, Vibration control of a flexible structure using ER dampers. J. Dyn. Syst. Meas. Control 121(1), 134–138 (1999)Google Scholar
  87. 87.
    M. Tomizawa, T. Aoyama, K. Tanaka, K. Sakurai, Suspension of tool shank vibration by electrorheological fluid dampers. Trans. Jpn. Soc. Mech. Eng. 64(622), 2287–2294 (1998)Google Scholar
  88. 88.
    T. Yakoh, T. Aoyama, Application of electro-rheological fluids to flexible mount and damper devices, in Proceeding of IEEE International Conference on Industrial Electronics, Control and Instrumentation, pp. 1815–1820 (2000)Google Scholar
  89. 89.
    M. Wang, R. Fei, Improvement of machining stability using a tunable-stiffness boring bar containing an electrorheological fluid. Smart Mater. Struct. 8(4), 511–514 (1999)Google Scholar
  90. 90.
    M. Wang, R. Fei, Chatter suppression based on nonlinear vibration characteristic of electrorheological fluids. Int. J. Mach. Tools Manuf. 39(12), 1925–1934 (1999)Google Scholar
  91. 91.
    M. Wang, R. Fei, On-line chatter detection and control in boring based on an electrorheological fluid. Mechatronics 11(7), 779–792 (2001)Google Scholar
  92. 92.
    M. Schwartz, Encyclopedia of Smart Materials (Wiley, New York, 2002)Google Scholar
  93. 93.
    P. Sam Paul, A.S. Varadarajan, X. AjayVasanth, G. Lawrance, Effect of magnetic field on damping ability of magnetorheological damper during hard turning. Arch. Civ. Mech. Eng. 14(3), 433–443 (2014)Google Scholar
  94. 94.
    P. Sam Paul, C.K. Shobhan Kumar, M. Joshua, S. Vignesh, S. Saravanan, A.S. Varadarajan, Study on the influence of magnetorheological fluid on tool vibration during end milling process. Int. J. Dyn. Control 5(3), 696–703 (2017)Google Scholar
  95. 95.
    D. Sathianarayanan, L. Karunamoorthy, J. Srinivasan, G.S. Kandasami, K. Palanikumar, Chatter suppression in boring operation using magnetorheological fluid damper. Mater. Manuf. Process. 23(4), 329–335 (2008)Google Scholar
  96. 96.
    D. Mei, T. Kong, A.J. Shih, Z. Chen, Magnetorheological fluid-controlled boring bar for chatter suppression. J. Mater. Process. Technol. 209(4), 1861–1870 (2009)Google Scholar
  97. 97.
    D. Mei, Z. Yao, T. Kong, Z. Chen, Parameter optimization of time-varying stiffness method for chatter suppression based on magnetorheological fluid-controlled boring bar. Int. J. Adv. Manuf. Technol. 46(9–12), 1071–1083 (2010)Google Scholar
  98. 98.
    Z. Yao, D. Mei, Z. Chen, Chatter suppression by parametric excitation: model and experiments. J. Sound Vib. 330(13), 2995–3005 (2011)Google Scholar
  99. 99.
    M.H. Salem, M.N. Anany, M. El-Habrouk, S.F. Rezeka, Control of a dynamic vibration absorber using a Magneto-Rheological Damper. Int. Rev. Mech. Eng. 7(1), 81–90 (2013)Google Scholar
  100. 100.
    D.S. Pour, S. Behbahani, Semi-active fuzzy control of machine tool chatter vibration using smart MR dampers. Int. J. Adv. Manuf. Technol. 83(1–4), 421–428 (2016)Google Scholar
  101. 101.
    E. Mohan, U. Natarajan, Experimental investigation on boring tool vibration control using MR fluid damper. J. Adv. Manuf. Syst. 15(1), 13–25 (2016)Google Scholar
  102. 102.
    G.P. Kumar, N. Seetharamaiah, B.D. Prasad, Improvement of surface quality using Magneto-Rheological Fluid (MRF) boring bar. Int. J. Dyn. Fluids 13(1), 29–46 (2017)Google Scholar
  103. 103.
    P. Sam Paul, A.S. Varadarajan, Effect of magneto rheological damper on tool vibration during hard turning. Front. Mech. Eng. 7(4), 410–416 (2012)Google Scholar
  104. 104.
    J.D. Carlson, M.R. Jolly, MR fluid, foam and elastomer device. Mechatronics 10(4–5), 555–569 (2000)Google Scholar
  105. 105.
    K.M. Popp, M. Kroger, W.H. Li, X.Z. Zhang, P.B. Kosasih, MRE properties under shear and squeeze modes and applications. J. Intell. Mater. Syst. Struct. 21(15), 1471–1477 (2010)Google Scholar
  106. 106.
    S.B. Kumbhar, S.S. Gawade, Lateral vibration control of a drill by using MR elastomer. Int. J. Eng. Technol. 1(5), 1–5 (2012)Google Scholar
  107. 107.
    G. Schubert, P. Harrison, Large-strain behaviour of Magneto-Rheological Elastomers tested under uniaxial compression and tension, and pure shear deformations. Polym. Test. 42, 122–134 (2015)Google Scholar
  108. 108.
    S.R. Khimi, K.L. Pickering, Comparison of dynamic properties of magnetorheological elastomers with existing antivibration rubbers. Compos. B Eng. 83, 175–183 (2015)Google Scholar
  109. 109.
    C. Collette, G. Kroll, G. Saive, V. Guillemier, M. Avraam, A. Premont, Isolation and damping properties of magnetorheological elastomers. J. Phys. Conf. Ser. 149(1), 1–4 (2009)Google Scholar
  110. 110.
    K. Danas, S.V. Kankanala, N. Triantafyllidis, Experiments and modeling of iron-particle-filled magnetorheological elastomers. J. Mech. Phys. Solids 60(1), 120–138 (2012)Google Scholar
  111. 111.
    B. Nayak, S.K. Dwivedy, K.S.R.K. Murthy, Multi-frequency excitation of magnetorheological elastomer-based sandwich beam with conductive skins. Int. J. Non-Linear Mech. 47(5), 448–460 (2012)Google Scholar
  112. 112.
    X. Zhang, S. Peng, W. Wen, W. Li, Analysis and fabrication of patterned magnetorheological fluid. Smart Mater. Struct. 17, 1–5 (2008)Google Scholar
  113. 113.
    H.X. Deng, X.L. Gong, Application of magnetorheological elastomer to vibration absorbers. Nonlinear Sci. Complex. 13, 462–470 (2006)zbMATHGoogle Scholar
  114. 114.
    D. Xiao-min, Y.U. Miao, L. Chang-rong, C. Wei-min, A new variable stiffness absorber based on magneto-rheological elastomer. Trans. Nonferrous Met. Soc. China 19(3), s611–s615 (2009)Google Scholar
  115. 115.
    P. Sam Paul, A.S. Varadarajan, A multi-sensor fusion model based on an artificial neural network to predict tool wear during hard turning. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 226(5), 853–860 (2012)Google Scholar

Copyright information

© The Institution of Engineers (India) 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringKarunya Institute of Technology and SciencesCoimbatoreIndia
  2. 2.MES College of EngineeringMalappuramIndia
  3. 3.VRV Engineers India LLPChennaiIndia

Personalised recommendations