Experimental Parametric Investigation of Electrochemical Drilling of AA6061-TiB2 In Situ Composites

  • S. ChandrasekharEmail author
  • N. B. V. Prasad
Original Contribution


The composite material manufacturing via in situ route is a popular method for developing the greater mechanical properties by reinforcing smaller volume of the ceramic phases. Electrochemical machining is widely employed for drilling smaller hole, machining the micro-slots and intricate shape on any material without considering its hardness. The present paper describes the electrochemical drilling of the composites reinforced with TiB2 ceramics under various reinforcement and volume contents of TiB2. Analysis of the experimental results indicates that the electrical parameters and electrolyte concentration offer significant effect on rate of material removal, delamination and radial overcut of drilled hole. The composite has minimum rate of material removal and maximum delamination and radial overcut than unreinforced alloy under ideal machining condition. Further, the effect of electrical parameters, electrolyte concentration and volume content of TiB2 on hole qualities are investigated via scanning electron microscopy and reported.


Electrochemical machining In situ composites Material removal rate Delamination Radial overcut 



  1. 1.
    R. Adalarasan, M. Santhanakumar, J. Inst. Eng. India Ser. C. 96, 65–71 (2015)CrossRefGoogle Scholar
  2. 2.
    A.K. Mishra, R.K. Srivastava, J. Inst. Eng. India Ser. C. 98, 97–103 (2017)CrossRefGoogle Scholar
  3. 3.
    N.S. Qu, X.L. Fang, Y.D. Zhang, D. Zhu, Int. J. Adv. Manuf. Technol. 69, 2703–2709 (2013)CrossRefGoogle Scholar
  4. 4.
    M. Sankar, A. Gnanavelbabu, K. Rajkumar, Proc. Eng. 97, 381–389 (2014)CrossRefGoogle Scholar
  5. 5.
    B.Babu, K. Raja, S. Dharmalingam, S. Udhayaraj, V. Vairamani, Int. J. ChemTech Res. 8, 508-518, (2015)Google Scholar
  6. 6.
    M.K. Das, K. Kumar, T.K. Barman, P. Sahoo, Proc. Mater. Sci. 6, 729–740 (2014)CrossRefGoogle Scholar
  7. 7.
    N. Lehnerta, M.H. Oschätzchen, A. Martin, A. Schubert, Proc. CIRP 68, 471–476 (2018)CrossRefGoogle Scholar
  8. 8.
    N. Lehnerta, M.H. Oschätzchen, A. Martin, A. Schubert, Proc. CIRP 68, 713–718 (2018)CrossRefGoogle Scholar
  9. 9.
    N.L. Yue, L. Lu, M.O. Lai, Compos. Struct. 47, 691–694 (1999)CrossRefGoogle Scholar
  10. 10.
    H. Hocheng, Y.H. Sun, S.C. Lin, P.S. Kao, J. Mater. Proc. Technol. 140, 264–268 (2003)CrossRefGoogle Scholar
  11. 11.
    C. Senthilkumar, G. Ganesan, R. Karthikeyan, S. Srikanth, Mater. Sci. Technol. 26, 289–296 (2010).CrossRefGoogle Scholar
  12. 12.
    B. Bhattacharyya, J. Munda, J. Mater. Proc. Technol. 140, 287–291 (2003)CrossRefGoogle Scholar
  13. 13.
    S.S. Uttarwar, I.K. Chopde, Int J Comput. Eng. Res. 3, 189–197 (2013)Google Scholar
  14. 14.
    Z. Zhang, D. Zhu, N. Qu, M. Wang, Microsyst. Technol. 13, 607–612 (2007)CrossRefGoogle Scholar
  15. 15.
    P. Satishkumar, S. Dharmalingam, K. Raja, K. Lingadurai, G. Padmanaban, Int. J. ChemTech Res. 07, 203–211 (2015)Google Scholar
  16. 16.
    A. Rajeshkumar, K.R. Govindan, Int J. Mach. Const. Eng. 2, 2394–3025 (2015)Google Scholar
  17. 17.
    B. Bhattacharyya, S.K. Sorkhel, J. Mater. Proc. Technol 86, 200–207 (1999)CrossRefGoogle Scholar
  18. 18.
    A. Chourasia, S.K. Singh, P. Agrawal, Int. J. App. Innov. Eng. Manag. 3, 342–346 (2014)Google Scholar

Copyright information

© The Institution of Engineers (India) 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringK L Deemed to be UniversityGunturIndia

Personalised recommendations