Multi-criteria Decision Making for Solar Panel Selection Using Fuzzy Analytical Hierarchy Process and Technique for Order Preference by Similarity to ideal Solution (TOPSIS): An Empirical Study

  • Gnanasekaran SasikumarEmail author
  • Sivasangari Ayyappan
Case Study


Solar energy has been one of the most utilized resources of non-conventional energy compared to wind and tidal energies. A photovoltaic system is used to generate solar energy by photovoltaics. The advancements emerged in solar power generation resulted as an economic alternative compared to conventional coal- or gas-based thermal power plants which are not only costly but pollute environment. The solar panel plays a vital role in a photovoltaic system, and a considerable research work is being done globally in order to reduce costs with better efficiency. Selection of solar panel encompasses complex factors involving both subjective and quantifiable parameters. Balancing both subjective and quantifiable parameters is essential for selecting appropriate solar panel. An integrated method is developed by combining Fuzzy analytical hierarchy process and Technique for Order Preference by Similarity to Ideal Solution, and the same is proposed for a 100 W solar panel selection. The case study was conducted to validate the proposed model for solar panel selection.


Solar panel Analytical hierarchy process Fuzzy AHP TOPSIS 

List of symbols

\( C_{j} \)

A criterion j

\( D_{t} \)

Expert of selection t

\( \widetilde{\text{A}} \)

Fuzzy set

\( \widetilde{W} \)

Fuzzy weight vector

\( \widetilde{G}_{ij} \)

A value of alternative

\( C_{jk} \)


\( \widetilde{G}_{ijk} \)

A sub-score of alternative

\( \widetilde{w}_{i} \)

A weight for criterion i


An alternative i


Fuzzy judgement matrix



\( H_{\beta }^{\alpha } \)

Total crisp performance matrix

\( H^{\alpha } \)

Total interval performance matrix


Pairwise comparison matrix

\( \beta \)

Risk index

\( C_{1} ,C_{2} , \ldots ,C_{n} \)

Set of decision elements

\( c_{j\beta }^{\alpha + } \) and \( c_{j\beta }^{\alpha - } \)

The best and worst crisp performance value among alternatives

\( h_{ij\beta }^{\alpha } \)

The crisp performance score

\( \alpha \)

Degree of confidence

\( M_{i\beta }^{\alpha + } \) and \( M_{i\beta }^{\alpha - } \)

Distance between ideal solutions and all the negative ideal solutions

\( I_{i\beta }^{\alpha } \)

Final performance score

\( \widetilde{h}_{ij} \)

Fuzzy performance score

\( \widetilde{a}_{ij} \)

Judgment score

\( \left( {L_{ij} ,M_{ij} ,U_{ij} } \right) \)

Fuzzy numbers

\( e_{lks} \)

Decision makers’ grades



The authors wish to thank their management for granting necessary permission to carry out the research work and reviewers for making significant contributions to enhance the article’s quality.


  1. 1.
    E.K. Zavadskas, M.J. Skibniewski, J. Antucheviciene, Performance analysis of civil engineering journals based on the web of science database. Arch. Civil Mech. Eng. 14, 519–527 (2014)CrossRefGoogle Scholar
  2. 2.
    M. Tavana, F.J.S. Arteaga, S. Mohammadi, M. Alimohammadi, A fuzzy multi-criteria spatial decision support system for solar farm location planning. Energy Strategy Rev 18, 93–105 (2017)CrossRefGoogle Scholar
  3. 3.
    G. Khan, S. Rathi, Optimal site selection for solar PV power plant in an Indian state using geographical information system (GIS). Int. J. Emerg. Eng. Res. Technol. 2(7), 260–266 (2014)Google Scholar
  4. 4.
    K.D. Patlitzianas, A. Pappa, J. Psarras, An information decision support system towards the formulation of a modern energy companies. Environ. Renew. Sustain. Energy Rev. 12(3), 790–806 (2008)CrossRefGoogle Scholar
  5. 5.
    K. Kowalski, S. Stagl, R. Madlener, I. Omann, Sustainable energy futures: methodological challenges in combining scenarios and participatory multi-criteria analysis. Eur. J. Oper. Res. 197(3), 1063–1074 (2017)CrossRefGoogle Scholar
  6. 6.
    P. Beltran, An AHP (analytic hierarchy process)/ANP (analytic network process)-based multi-criteria decision approach for the selection of solar-thermal power plant investment project. Energy 17, 645–658 (2013)Google Scholar
  7. 7.
    C. Kahraman, İ. Kaya, S. Cebi, A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process. Energy 34(10), 1603–1616 (2009)CrossRefGoogle Scholar
  8. 8.
    T. Kaya, C. Kahraman, Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: the case of Istanbul. Energy 35, 2517–2527 (2010). CrossRefGoogle Scholar
  9. 9.
    S. Önüt, U.R. Tuzkaya, N. Saadet, Multiple criteria evaluation of current energy resources for Turkish manufacturing industry. Energy Convers. Manag. 49(6), 1480–1492 (2008)CrossRefGoogle Scholar
  10. 10.
    N. Amin, C.W. Lung, K. Sopian, A practical field study of various solar cells on their performance in Malaysia. Renew. Energy J. 34(8), 1939–1946 (2009)CrossRefGoogle Scholar
  11. 11.
    Y. Charabi, A. Gastli, GIS assessment of large CSP plant in Duqum, Oman. Renew. Sustain. Energy Rev. 14(2), 835–841 (2010)CrossRefGoogle Scholar
  12. 12.
    T.V. Ramachandra, R.K. Jha, S. Vamsee Krishna, B.V. Shruthi, Solar energy decision support system. Int. J. Sustain. Energy. 24(4), 207–224 (2005)CrossRefGoogle Scholar
  13. 13.
    A. Mardani, A. Jusoh, E.K. Zavadskas, Z. Khalifah, Application of multiple criteria decision making techniques in tourism and hospitality industry: a systematic review. Transform. Bus. Econ. 15(1), 37 (2016)Google Scholar
  14. 14.
    F. Cavallaro, Fuzzy TOPSIS approach for assessing thermal-energy storage in concentrated solar power (CSP) systems. Appl. Energy 87, 496–503 (2010)CrossRefGoogle Scholar
  15. 15.
    J.J. Wang, Y.J. Jing, C.F. Zhang, J.H. Zhao, Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew. Sustain. Energy Rev. 13(9), 2263–2278 (2009)CrossRefGoogle Scholar
  16. 16.
    Y.P. Cai, G.H. Huang, Q.G. Lin, X.H. Nie, Q. Tan, An optimization-model-based interactive decision support system for regional energy management systems planning under uncertainty. Expert Syst. Appl. 36(2), 3470–3482 (2009)CrossRefGoogle Scholar
  17. 17.
    H. Deng, Multicriteria analysis with fuzzy pairwise comparison. Int. J. Approx. Reason. 21, 215–231 (1999)CrossRefGoogle Scholar
  18. 18.
    A. Kengpol, P. Rontlaong, M. Tuominen, A decision support system for selection of solar power plant locations by applying fuzzy AHP and TOPSIS: an empirical study. J. Softw. Eng. Appl. 6, 470–481 (2013)CrossRefGoogle Scholar
  19. 19.
    W. Ho, X. Xu, P.K. Dey, Multi-criteria decision making approaches for supplier evaluation and selection: a literature review. Eur. J. Oper. Res. 202, 16–24 (2010)CrossRefzbMATHGoogle Scholar
  20. 20.
    W.J. Wang, C.H. Cheng, H.K. Cheng, Fuzzy hierarchical TOPSIS for supplier selection. Appl. Soft Comput. 9, 377–386 (2009)CrossRefGoogle Scholar
  21. 21.
    M. Vetrivelsezhian, C. Muralidharan, T. Nambirajan, S.G. Deshmukh, Performance measurement in a public sector passenger bus transport company using fuzzy TOPSIS, fuzzy AHP and ANOVA—a case study. Int. J. Eng. Sci. Technol. 3, 1046–1059 (2011)Google Scholar
  22. 22.
    S.M. Sapuan, H.S. Abdalla, A prototype knowledge-based system for the material selection of polymeric-based composites for automotive components. Compos. Part A: Appl. Sci. Manuf. 29(7), 731–742 (1998)CrossRefGoogle Scholar
  23. 23.
    S.D. Pohekar, M. Ramachandran, Application of multi-criteria decision making to sustainable energy planning—a review. Renew. Sustain. Energy Rev. 8(4), 365–381 (2004)CrossRefGoogle Scholar
  24. 24.
    S. Noguás, E. González-González, Multi-criteria impacts assessment for ranking highway projects in Northwest Spain. Transp. Res. Part A Policy Pract. 65, 80–91 (2014)CrossRefGoogle Scholar
  25. 25.
    Y.-J. Chen, Structured methodology for supplier selection and evaluation in a supply chain. Inf. Sci. 181(9), 1651–1670 (2011)CrossRefGoogle Scholar
  26. 26.
    L.A. Zadeh, Fuzzy set. Inf. Control 8(3), 338–353 (1965)CrossRefzbMATHGoogle Scholar
  27. 27.
    C.H. Yeh, H. Deng, An algorithm for fuzzy multi-criteria decision making, in IEEE International Conference on Intelligent Processing Systems, Beijing, China. (1997)Google Scholar
  28. 28.
    G.A. Zsidisin, Grounded definition of supply risk. J. Purch. Supply Manag. 9, 217–224 (2003)CrossRefGoogle Scholar
  29. 29.
    C.L. Hwang, K. Yoon, Multiple Attribute Decision Making Methods and Application (Springer, New York, 1981)CrossRefzbMATHGoogle Scholar
  30. 30.
    A. Awasthi, S.S. Chauhan, H. Omrani, Application of fuzzy TOPSIS in evaluating sustainable transportation systems. Int. J. Expert Syst. Appl. 38, 12270–12280 (2011)CrossRefGoogle Scholar
  31. 31.
    G.R. Jahanshahloo, F.H. Lotfi, M. Izadikhah, Extension of the TOPSIS method for decision-making problems with fuzzy data. Appl. Math. Comput. 181(2), 1544–1551 (2006)zbMATHGoogle Scholar
  32. 32.
    M. Celik, I.D. Er, A.F. Ozok, Application of fuzzy extended AHP methodology on shipping registry selection: the case of turkish maritime industry. Expert Syst. Appl. 36(1), 190–198 (2009)CrossRefGoogle Scholar
  33. 33.
    G. Sasikumar, S. Velappan, P. Manimaran, An integrated model for supplier selection using fuzzy analytical hierarchy process: a steel plant case study. Int. J. Procure. Manag. 3(3), 292–315 (2010)CrossRefGoogle Scholar

Copyright information

© The Institution of Engineers (India) 2019

Authors and Affiliations

  1. 1.GMR Institute of TechnologySrikakulamIndia

Personalised recommendations