Advertisement

Implementation of CFD–FSI Technique Coupled with Response Surface Optimization method for Analysis of Three-Lobe Hydrodynamic Journal Bearing

  • D. Y. DhandeEmail author
  • G. H. Lanjewar
  • D. W. Pande
Original Contribution
  • 97 Downloads

Abstract

In the work presented here, numerical simulations were carried out using computational fluid dynamics and fluid–structure interactions for three-lobe journal bearing. ANSYS Workbench® software was used for the study. The elastic deformations were also considered for the analysis. The fluid pressure forces and displacements were transferred through inbuilt transfer interface available in the software. The optimized journal bearing position was achieved using a response surface optimization technique. The methodology was validated by comparing numerical results obtained with experimental results available in the literature, and a good agreement was found. The proposed numerical method was implemented to study the pressure distribution in three-lobe journal bearing considered for study at three eccentricity ratios 0.25, 0.6 and 0.75 for various speeds ranging from 1000 to 4000 RPM. Preload factor of 0.5 was considered for the study. The results were compared with a set of experimental data obtained on a test rig developed by the authors.

Keywords

Three-lobe bearing Computational fluid dynamics Fluid–structure interaction Response surface analysis Numerical analysis of hydrodynamic bearing 

List of symbols

Cb

Bearing clearance (m)

Cp

Lobe clearance or machined clearance (m)

D

Shaft diameter (m)

e

Eccentricity between shaft and bearing

h

Film thickness (m)

I

Unit tensor

L

Length of the bearing

O

Shaft center

O

Bearing center

P

Static pressure (Pa)

R

Radius of the shaft (m)

t

Time

W

Load carrying capacity (N)

[Ff]

Fluid force matrix

[Fs]

Structural force matrix

[Mf]

Fluid mass matrix

[Ms]

Structural mass matrix

[R]

Coupling matrix

\(\overrightarrow {F}\)

External body force (N)

\(\vec{v}\)

Fluid velocity vector

Δh

Relative rigid displacement of the two bearing surfaces

δ

Preload factor

δE

Deformations due to elasticity

δT

Deformation due to thermal expansion

ε

Eccentricity ratio = e/Cb

θ

Angular coordinate (°)

θp

Angle from the +ve X-axis to the minimum film location for a pa

μ

Fluid viscosity (Pa s)

ρ

Fluid density (kg/m3)

\(\overline{\overline{\tau }}\)

Stress tensor

ϕ

Attitude angle (°)

χ

Lobe angle

ω

Angular velocity (rad/s)

References

  1. 1.
    J. Lund, Rotor-bearing dynamics design technology, part VII: The three lobe bearing and floating ring technology, Technical Report AFAPL- TR-65-4L, Part VII (1968)Google Scholar
  2. 2.
    O. Pinkus, Analysis of noncircular gas journal bearings, Transactions of the ASME, J. Lubr. Technol. 92(4), 616–623 (1975)CrossRefGoogle Scholar
  3. 3.
    M.F. Saad, Comparative investigation of the performance of a three-lobed journal bearing, Tribol. Int. 12(5), 219–224 (1979)CrossRefGoogle Scholar
  4. 4.
    R. Sinhasan, M. Malik, M. Chandra, A comparative study of some three lobe bearing configurations. Wear 72, 277–286 (1981)CrossRefGoogle Scholar
  5. 5.
    M. Malik, R. Sinhasan, M. Chandra, On performance characteristics of three-lobe porous hydrodynamic journal bearings. ASLE Trans. 24(3), 354–361 (1981)CrossRefGoogle Scholar
  6. 6.
    R.D. Flack, P.E. Allaire, An experimental and theoretical examination of the static characteristics of three lobe bearings. ASLE Trans. 25(1), 88–94 (1982)CrossRefGoogle Scholar
  7. 7.
    J.D. Knight, L.E. Barrett, An approximate solution technique for multilobe journal bearings including thermal effects, with comparison to experiment. ASLE Trans. 26, 501–508 (1983)CrossRefGoogle Scholar
  8. 8.
    D.T. Gethin, An Application of FEM to the thermohydrodynamic analysis of a cylindrical bore bearing running at high speed. J. Tribol. 109, 283–289 (1987)CrossRefGoogle Scholar
  9. 9.
    K. Prabhakaran Nair, R. Sinhasan, D.V. Singh, A study of elastohydrodynamic effects in a three-lobe journal bearing. Tribol. Int. 20, 125–132 (1987)CrossRefGoogle Scholar
  10. 10.
    K. Vaidyanathan, T.G. Keith Jr., Numerical prediction of cavitation in noncircular journal bearings. Tribol. Trans. 32(2), 215–224 (1989)CrossRefGoogle Scholar
  11. 11.
    H.N. Chandrawat, R. Sinhasan, A study of elastohydrodynamic lubrication in a three lobe bearing. Wear 137, 1–13 (1990)CrossRefGoogle Scholar
  12. 12.
    D.T. Gethin, B. Basri, An experimental and numerical investigation into the thermal behaviour of a three-lobe profile bore bearing. Proc. Inst. Mech. Eng. Part J J Eng. Tribol. 205, 251–264 (1991)Google Scholar
  13. 13.
    D.V. Taylor, G.J. Kostrzewsky, R.D. Flack, Measured performance of highly preloaded three lobe journal bearing part-I: static characteristics 38, 507–516 (1995)Google Scholar
  14. 14.
    M.T. Ma, C.M. Taylor, A Comparative thermal analysis of the static performance of different fixed profile bore plain bearings. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 213, 13–30 (1999)CrossRefGoogle Scholar
  15. 15.
    H.R. Shooroki, R.R. Meybodi, S.M. Karbassi, G.B. Loghmani, Numerical solution of Reynold’s equation governing noncircular gas bearing system using radial basis function. Iran. J. Sci. Technol. 38, 389–397 (2014)MathSciNetGoogle Scholar
  16. 16.
    A. Chasalevris, Analytical evaluation of the static and dynamic characteristics of three-lobe journal bearings with finite length, ASME J. Tribol. 137, 1–6 (2015)CrossRefGoogle Scholar
  17. 17.
    Z. Li, L. Yang, J. Zhou, L. Yu, Pressure distribution for multi-lobe bearings using Fourier analysis. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 229(5), 624–635 (2015)CrossRefGoogle Scholar
  18. 18.
    L. Roy, S.K. Kakoty, Groove location for optimum performance of three- and four-lobe bearings using genetic algorithm. Inst. Mech. Eng. Part J J. Eng. Tribol. 229(1), 47–63 (2015)CrossRefGoogle Scholar
  19. 19.
    A.KH. EL-Said, B.M. EL-Souhily, W.A. Crosby, H.A. EL-Gama, The performance and stability of three-lobe journal bearing textured with micro protrusions. Alex. Eng. J. 56(4), 423–432 (2017)CrossRefGoogle Scholar
  20. 20.
    D. Y. Dhande, D.W. Pande, Multiphase flow analysis of hydrodynamic journal bearing using CFD coupled Fluid Structure Interaction considering cavitation. J. King Saud Univ. Eng. Sci. 30(4), 345–354 (2018)Google Scholar
  21. 21.
    D.Y. Dhande, D.W. Pande, A TWO-way FSI analysis of multiphase flow in hydrodynamic journal bearing with cavitation. J. Braz. Soc. Mech. Sci. Eng. 39, 3399–3412 (2017)CrossRefGoogle Scholar

Copyright information

© The Institution of Engineers (India) 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringAll India Shri Shivaji Memorial Society’s College of EngineeringPuneIndia
  2. 2.Department of Mechanical EngineeringCollege of Engineering, PuneShivajinagar, PuneIndia

Personalised recommendations