Advertisement

Effect of Taper on Free Vibration of Functionally Graded Rotating Beam by Mori-Tanaka Method

  • Pacharu Ravi Kumar
  • Koganti Mohana Rao
  • Nalluri Mohan Rao
Original Contribution
  • 25 Downloads

Abstract

Rotating beams are the practical application for aircraft propellers, helicopter blades, wind mill propeller, turbine blades and spinning space structures. In these structures, taper beams are preferred due to optimum weight distribution with uniform strength. Vibration behavior of tapered variable section beams subjected to centrifugal forces is important in analysis of structures. The research work deals with flapwise vibration of functionally graded (FG) rotating taper beam. The material properties of the beam change symmetrically in the direction of thickness from middle surface to the outer surfaces. Mori-Tanaka method estimates these properties of FG beam. The flapwise frequencies are obtained using Differential Transform Method (DTM). The effect of different parameters such as rotating speed, taper ratio, hub radius ratio and gradient index on flapwise frequency is discussed.

Keywords

FG material Rotating taper beam Differential transform method Mori-Tanaka method Flapwise vibration 

Notations

A(x)

Area of the beam at a distance x

E(z)

Equivalent young’s_modulus

Iy(x)

Moment of inertia

M

Mass of the beam per unit length

n

Gradient index

r

Hub root radius

Vc

Ceramic volume fraction

Vm

Metal volume fraction

w

Flapwise displacement

x

Longitudinal coordinate of the beam

z

Lateral coordinate of the beam

γ

Non dimensional rotating speed

δ

Hub radius ratio

ζ

Non dimensional beam length

ρ(z)

Equivalent density

ω

Flapwise frequency

Ω

Rotating speed

References

  1. 1.
    R. Southwell, F. Gough, The free transverse vibration of airscrew blades. Great Britain Aeronautical Research Committee (ARC) Reports and Memoranda (1922), p. 766Google Scholar
  2. 2.
    F. Liebers, Contribution to the theory of propeller vibrations. National Advisory Committee for Aeronautics (NACA) Technical Memorandum No. 568 (1929)Google Scholar
  3. 3.
    T. Theodorsen, Propeller Vibrations and the effect of centrifugal force. National Advisory Committee for Aeronautics (NACA). Technical Notes No. 516 (1935)Google Scholar
  4. 4.
    M. Schilhansl, Bending frequency of a rotating cantilever beam. J. Appl. Mech. Trans. Am. Soc. Mech. Eng. 25, 28–30 (1958)MathSciNetzbMATHGoogle Scholar
  5. 5.
    D.H. Hodges, Vibration and response of non uniform rotating beams with discontinuities. J. Am. Helicopter Soc. 24, 43–50 (1979)CrossRefGoogle Scholar
  6. 6.
    D.H. Hodges, M.J. Rutkowski, Free vibration analysis of rotating beams by a variable order finite element method. AIAA J. 19, 1459–1466 (1981)CrossRefzbMATHGoogle Scholar
  7. 7.
    A.D. Wright, C.E. Smith, R.W. Thresher, J.L.C. Wang, Vibration modes of centrifugally stiffened beams. Trans. ASME J. Appl. Mech. 49, 197–202 (1982)CrossRefzbMATHGoogle Scholar
  8. 8.
    W.H. Liu, F.H. Yeh, Vibrations of non-uniform rotating beams. J. Sound Vib. 119, 379–384 (1987)CrossRefGoogle Scholar
  9. 9.
    Y. Liu, F.H. Liu, W.H. Liu, Transverse vibrations of non uniform rotating beams with rotational and translational restaints. J. Chin. Soc. Mech. Eng. 10, 393–400 (1989)Google Scholar
  10. 10.
    H.H. Yoo, S.H.S. Hin, Vibration analysis of rotating cantilever beams. J. Sound Vib. 212, 807–828 (1998)CrossRefGoogle Scholar
  11. 11.
    G. Wang, N.M. Wereley, Free vibration analysis of rotating blades with uniform tapers. AIAA J. 42, 2429–2437 (2004)CrossRefGoogle Scholar
  12. 12.
    A. Bazoune, Effect of tapering on natural frequencies of rotating beams. J. Shock Vib. 14, 169–179 (2007)CrossRefGoogle Scholar
  13. 13.
    J.B. Gunda, A.P. Singh, P.S. Chhabra, R. Ganguli, Free vibration analysis of rotating tapered blades using Fourier-p superelement. Struct. Eng. Mech. 27(2), 1–17 (2007)CrossRefGoogle Scholar
  14. 14.
    A. Gangele, S. Ahmed, Modal analysis of S809 wind turbine blade considering differential geometrical and material properties. J. Inst. Eng. Ser. C 94(3), 225–228 (2013)CrossRefGoogle Scholar
  15. 15.
    A. Saha, A. Das, A. Karmakar, First-ply failure analysis of delaminated rotating composite conical shells: a finite element approach. J. Inst. Eng. Ser. C (2017).  https://doi.org/10.1007/s40032-017-0373-y Google Scholar
  16. 16.
    S. Kapuria, M. Bhattacharyya, A.N. Kumar, Bending and free vibration response of layered functionally-graded beams: a theoretical model and its experimental validation. Compos. Struct. 82(3), 390–402 (2008)CrossRefGoogle Scholar
  17. 17.
    S.A. Sina, H.M. Navaji, H. Haddadpour, An analytical method for free vibration analysis of functionally graded beams. Mater. Des. 30(3), 741–747 (2009)CrossRefGoogle Scholar
  18. 18.
    M.T. Piovan, R. Sampaio, A study on the dynamics of rotating beams with functionally graded properties. J. Sound Vib. 327(1–2), 134–143 (2009)CrossRefGoogle Scholar
  19. 19.
    M. Simsek, T. Kocaturk, Free and forced vibration of a functionally-graded beam subjected to a concentrated moving harmonic load. Compos. Struct. 90(4), 465–473 (2009)CrossRefGoogle Scholar
  20. 20.
    N. Wattanasakulpong, B.G. Prusty, D.W. Kelly, M. Hoffman, A theoretical investigation on the free vibration of functionally graded beams, in Proceedings of the 10th International conference on computational structures technology, Valencia (2010), p. 285Google Scholar
  21. 21.
    E.A. Amal, M.A. Eltaher, F.F. Mahmoud, Free vibration characteristics of a functionally graded beam by finite element method. Appl. Math. Model. 35(1), 412–425 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    L.-L. Ke, Y.-S. Wang, Size effect on dynamic stability of functionally graded micro beams based on a modified couple stress theory. Compos. Struct. 93, 342–350 (2011)CrossRefGoogle Scholar
  23. 23.
    N. Wattanasakulpong, V. Ungbhakorn, Free vibration analysis of functionally graded beams with general elastically end constraints by DTM. World J. Mech. 2, 297–310 (2012)CrossRefGoogle Scholar
  24. 24.
    M.N.V. Ramesh, N.M. Rao, Free vibration analysis of rotating functionally-graded cantilever beams. Int. J. Acoust. Vib. 19(1), 31–41 (2014)Google Scholar
  25. 25.
    A. Das, A. Karmakar, Free vibration characteristics of functionally graded pre-twisted conical shells under rotation. J. Inst. Eng. Ser. C (2017).  https://doi.org/10.1007/s40032-017-0378-6 Google Scholar
  26. 26.
    J.K. Zhou, Differential Transformation and Its Application for Electrical Circuits (Huazhong University Press, Wuhan, 1986)Google Scholar
  27. 27.
    O. Ozdemir, M.O. Kaya, Flap wise bending vibration analysis of a rotating tapered cantilever Bernoulli–Euler beam by differential transform method. J. Sound Vib. 289, 413–420 (2005)CrossRefGoogle Scholar
  28. 28.
    O.K. Metin, Free vibration analysis of rotating Timoshenko beam by differential transform method. Int. J. Aircr. Eng. Aerosp. Technol. 78(3), 194–203 (2006)CrossRefGoogle Scholar
  29. 29.
    R. Attarnejad, A. Shahba, Application of differential transform method in free vibration analysis of rotating non-prismatic beams. World Appl. Sci. J. 5(4), 441–448 (2008)Google Scholar
  30. 30.
    K. Torabi, H. Afshari, E. Zafari, Approximate solution for longitudinal vibration of non-unifrom beams by differential transform method (DTM). J. Mater. Sci. Eng. B 3(1), 63–69 (2013)Google Scholar

Copyright information

© The Institution of Engineers (India) 2018

Authors and Affiliations

  • Pacharu Ravi Kumar
    • 1
  • Koganti Mohana Rao
    • 2
  • Nalluri Mohan Rao
    • 3
  1. 1.Mechanical Engineering DepartmentPrasad V. Potluri, Siddhartha Institute of TechnologyVijayawadaIndia
  2. 2.Mechanical Engineering DepartmentVelagapudi Ramakrishna Siddhartha Engineering CollegeVijayawadaIndia
  3. 3.Mechanical Engineering Department, University College of EngineeringJawaharlal Nehru Technological University KakinadaKakinadaIndia

Personalised recommendations