Advertisement

Natural Frequencies of Rectangular Plate With- and Without-Rotary Inertia

  • Kanak Kalita
  • Salil Haldar
Original Contribution
  • 134 Downloads

Abstract

A nine-node isoparametric plate element, in conjunction with first-order shear deformation theory, was used for free vibration analysis of rectangular plates. Both thick and thin plate problems were solved for various aspect ratios and boundary conditions. In this work, the primary focus is on the effect of rotary inertia on the natural frequencies of rectangular plates. It is found that rotary inertia significantly affects thick plates, while it can be ignored for thin plates. The numerical convergence is very rapid and based on a comparison with data from the literature; it is proposed that the present formulation can yield highly accurate results. Finally, some numerical solutions are provided here, which may serve as benchmarks for future research on similar problems.

Keywords

Finite element method (FEM) FSDT Rectangular plate Rotary inertia Natural frequency 

List of Symbols

[B]

Strain displacement matrix

[D]

Rigidity matrix

[K]

Global stiffness matrix

[N]

Shape function

[N0]

Null matrix

[M]

Consistent mass matrix

|J|

Jacobian matrix

[Nr]

Interpolation function of the rth point

[K0]

Overall stiffness matrix

[M0]

Overall Mass matrix

w

Transverse displacement

θxθy

Total rotations in bending

E

Modulus of elasticity

G

Modulus of rigidity

ν

Poisson’s ratio

h

Thickness of plate

a, b

Plate dimensions

D

Flexural rigidity

ω

Natural frequency

ϕxϕy

Average shear rotation

θxθy

Total rotation in bending

{σ}

Stress vector

{ε}

Strain vector

Mx, My

Bending moments in x and y direction

Mxy

Twisting moment

QxQy

Transverse shear forces

\( \xi , \eta \)

Natural coordinates

ρ

Density

References

  1. 1.
    A.W. Leissa, Recent research in plate vibrations, 1973–1976: classical theory. Shock Vib. Inf. Cent. Shock Vib. Dig. 9(10), 13–24 (1978)CrossRefGoogle Scholar
  2. 2.
    A.W. Leissa, Recent research in plate vibrations, 1973-1976: complicating effects. Shock Vib. Inf. Cent. Shock Vib. Dig. 10(12), 21–35 (1978)CrossRefGoogle Scholar
  3. 3.
    A.W. Leissa, Plate vibration research, 1976–1980: classical theory. Shock Vib. Inf. Cent. Shock Vib. Dig. 13(9), 11–22 (1980)CrossRefGoogle Scholar
  4. 4.
    A.W. Leissa, Plate vibration research, 1976–1980: complicating effects. Shock Vib. Inf. Cent. Shock Vib. Dig. 13(10), 19–36 (1980)Google Scholar
  5. 5.
    A.W. Leissa, Plate vibration research, 1981–1985, part I: classical theory. Shock Vib. Inf. Cent. Shock Vib. Dig. 19(2), 11–18 (1987)CrossRefGoogle Scholar
  6. 6.
    A.W. Leissa, Plate vibration research, 1981–1985, part II: complicating effects. Shock Vib. Inf. Cent. Shock Vib. Dig. 19(3), 10–24 (1987)CrossRefGoogle Scholar
  7. 7.
    K.M. Liew, Y. Xiang, S. Kitipornchai, Research on thick plate vibration: a literature survey. J. Sound Vib. 180(1), 163–176 (1995)CrossRefGoogle Scholar
  8. 8.
    G. Yamada, T. Irie, Plate vibration research in Japan. Appl. Mech. Rev. 40(7), 879–892 (1987)CrossRefGoogle Scholar
  9. 9.
    O. G. McGee (2013) Flexural vibrations of clamped-free rhombic plates with corner stress singularities Part 1 review of research. J. Vib. Control 1077546312456864Google Scholar
  10. 10.
    S. Haldar, A.H. Sheikh, Bending analysis of composite folded plates by finite element method. Finite Elem. Anal. Des. 47(4), 477–485 (2011)CrossRefGoogle Scholar
  11. 11.
    P. Dey, A.H. Sheikh, D. Sengupta, A new element for the analysis of composite plates. Finite Elem. Anal. Des. 82, 62–71 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    T. Rock, E. Hinton, Free vibration and transient response of thick and thin plates using the finite element method. Earthq. Eng. Struct. Dyn. 3(1), 51–63 (1974)CrossRefGoogle Scholar
  13. 13.
    S. Natarajan et al. Natural frequencies of cracked isotropic and specially orthotropic plates using the extended finite element method (2011)Google Scholar
  14. 14.
    S. Natarajan et al., Natural frequencies of cracked functionally graded material plates by the extended finite element method. Compos. Struct. 93(11), 3082–3092 (2011)CrossRefGoogle Scholar
  15. 15.
    D.J. Gorman, Free vibration analysis of completely free rectangular plates by the superposition–Galerkin method. J. Sound Vib. 237(5), 901–914 (2000)CrossRefGoogle Scholar
  16. 16.
    D.J. Gorman, W. Ding, The superposition-Galerkin method for free vibration analysis of rectangular plates. J. Sound Vib. 194(2), 187–198 (1996)CrossRefGoogle Scholar
  17. 17.
    J.T. Chen et al., A meshless method for free vibration analysis of circular and rectangular clamped plates using radial basis function. Eng. Anal. Boundary Elem. 28(5), 535–545 (2004)MathSciNetCrossRefGoogle Scholar
  18. 18.
    G.R. Liu, X.L. Chen, A mesh-free method for static and free vibration analyses of thin plates of complicated shape. J. Sound Vib. 241(5), 839–855 (2001)CrossRefGoogle Scholar
  19. 19.
    P. Malekzadeh, S.A. Shahpari, Free vibration analysis of variable thickness thin and moderately thick plates with elastically restrained edges by DQM. Thin Wall. Struct. 43(7), 1037–1050 (2005)CrossRefGoogle Scholar
  20. 20.
    C.W. Bert, W. Xinwei, A.G. Striz, Differential quadrature for static and free vibration analyses of anisotropic plates. Int. J. Solids Struct. 30(13), 1737–1744 (1993)CrossRefGoogle Scholar
  21. 21.
    Ö. Civalek, Three-dimensional vibration, buckling and bending analyses of thick rectangular plates based on discrete singular convolution method. Int. J. Mech. Sci. 49(6), 752–765 (2007)CrossRefGoogle Scholar
  22. 22.
    G.W. Wei, Y.B. Zhao, Y. Xiang, The determination of natural frequencies of rectangular plates with mixed boundary conditions by discrete singular convolution. Int. J. Mech. Sci. 43(8), 1731–1746 (2001)CrossRefGoogle Scholar
  23. 23.
    R.B. Bhat, Natural frequencies of rectangular plates using characteristic orthogonal polynomials in Rayleigh-Ritz method. J. Sound Vib. 102(4), 493–499 (1985)CrossRefGoogle Scholar
  24. 24.
    E. Carrera, F.A. Fazzolari, L. Demasi, Vibration analysis of anisotropic simply supported plates by using variable kinematic and Rayleigh-Ritz method. J. Vib. Acoust. 133(6), 061017 (2011)CrossRefGoogle Scholar
  25. 25.
    C.V. Srinivasa, J.S. Yalaburgi, W.P. Prema Kumar, Experimental and finite element studies on free vibration of skew plates. Int. J. Adv. Struct. Eng. (IJASE) 6(1), 1–11 (2014)Google Scholar
  26. 26.
    Srinivasa et al., Experimental and finite element studies on free vibration of cylindrical skew panels. Int. J. Adv. Struct. Eng. 6, 1 (2014)Google Scholar
  27. 27.
    R.W. Clough, J.L. Tocher, Finite element stiffness matrices for analysis of plates in bending, Proceedings of conference on matrix methods in structural analysis. 1 (1965)Google Scholar
  28. 28.
    J.-L. Batoz, K.-J. Bathe, L.-W. Ho, A study of three-node triangular plate bending elements. Int. J. Numer. Meth. Eng. 15(12), 1771–1812 (1980)CrossRefGoogle Scholar
  29. 29.
    M.M. Hrabok, T.M. Hrudey, A review and catalogue of plate bending finite elements. Comput. Struct. 19(3), 479–495 (1984)CrossRefGoogle Scholar
  30. 30.
    S. Sahoo, Free vibration of laminated composite hypar shell roofs with cutouts. Adv. Acoust. Vib. (2011)Google Scholar
  31. 31.
    S. Sahoo, Laminated composite stiffened shallow spherical panels with cutouts under free vibration–A finite element approach. Eng. Sci. Technol. Int. J. 17(4), 247–259 (2014)CrossRefGoogle Scholar
  32. 32.
    S. Sahoo, Laminated composite stiffened cylindrical shell panels with cutouts under free vibration. Int. J. Manuf. Mater. Mech. Eng. (IJMMME) 5(3), 37–63 (2015)Google Scholar
  33. 33.
    K.-N. Koo, Effects of shear deformation and rotary inertia on the natural frequencies of axially loaded beams. J. Mech. Sci. Technol. 28(3), 849–857 (2014)CrossRefGoogle Scholar
  34. 34.
    A. Majumdar, M.C. Manna, S. Haldar, Bending of skewed cylindrical shell panels. Int. J. Comput. Appl. 1(8), 89–93 (2010)Google Scholar
  35. 35.
    M.K. Pandit, S. Haldar, M. Mukhopadhyay, Free vibration analysis of laminated composite rectangular plate using finite element method. J. Reinf. Plast. Compos. 26(1), 69–80 (2007)CrossRefGoogle Scholar
  36. 36.
    K. Kalita, S. Haldar, Parametric study on thick plate vibration using FSDT. Mech. Mech. Eng. 19(2), 81–90 (2015)Google Scholar
  37. 37.
    K. Kalita, S. Haldar, Free vibration analysis of rectangular plates with central cutout. Cogent Eng. 3(1), 1163781 (2016)CrossRefGoogle Scholar
  38. 38.
    R.D. Mindlin, Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech. 18, 31–38 (1951)zbMATHGoogle Scholar

Copyright information

© The Institution of Engineers (India) 2016

Authors and Affiliations

  1. 1.SVKM’S Narsee MonjeeInstitute of Management StudiesShirpurIndia
  2. 2.Indian Institute of Engineering Science and TechnologyShibpurIndia

Personalised recommendations