Advertisement

Sinusoidal Oscillator Realization Using Band-Pass Filter

  • Ajay Kumar KushwahaEmail author
  • Ashok Kumar
Original Contribution
  • 21 Downloads

Abstract

A second-order sinusoidal oscillator realization is presented using biquad band-pass filter. It uses non-inverting type of band-pass filter with unity-gain feedback to generate sinusoidal oscillation. The current-controlled differential difference current conveyor transconductance amplifier (CCDDCCTA) block-based band-pass filter is proposed to implement sinusoidal oscillation. The oscillator is found to posses both the voltage and current outputs simultaneously. It is also observed that the amplitude of the output current of the oscillator can be varied using bias current of CCDDCCTA. The feature of an oscillator like non-ideality has also been discussed for the proposed oscillator. The theoretical propositions have been verified through SPICE-based OrCAD 16.6 circuit simulator.

Keywords

Current-controlled differential difference current conveyor transconductance amplifier (CCDDCCTA) Analog building block (ABB) Band-pass filter (BPF) 

Notes

Acknowledgements

The authors are thankful to the anonymous reviewers and the Editor-in-Chief for their constructive and useful feedback on this manuscript.

References

  1. 1.
    R. Senani, D.R. Bhaskar, A.K. Singh, V.K. Singh, Current Feedback Operational Amplifier and Their Application (Springer, New York, 2013)CrossRefGoogle Scholar
  2. 2.
    R. Senani, New RC active oscillator configuration employing unity gain amplifiers. Electron. Lett. 21(20), 889–891 (1985).  https://doi.org/10.1049/el:19850627 CrossRefGoogle Scholar
  3. 3.
    N. Boutin, Synthesis of oscillator circuits employing only one unity gain amplifier. Electron. Lett. 22(1), 22–23 (1986).  https://doi.org/10.1049/el:19860015 CrossRefGoogle Scholar
  4. 4.
    A.M. Soliman, Novel oscillators using current and voltage followers. J. Frankl. Inst. 335B(6), 997–1007 (1998).  https://doi.org/10.1016/S0016-0032(97)00044-6 CrossRefGoogle Scholar
  5. 5.
    A.K. Lu, G.W. Roberts, D.A. Johns, A high quality analog oscillator using oversampling D/A conversation technique. IEEE Trans. Circuits Syst. 41(7), 437–444 (1994).  https://doi.org/10.1109/82.298375 CrossRefzbMATHGoogle Scholar
  6. 6.
    G. Chien, P.R. Gray, A 900-MHz local oscillator using a DLL-based frequency multiplier technique for PCS applications. IEEE J. Solid State Circuits 35(12), 1996–1999 (2000).  https://doi.org/10.1109/4.890315 CrossRefGoogle Scholar
  7. 7.
    G. Palumbo, M. Pennisi, S. Pennisi, Approach to analyse and design nearly sinusoidal oscillators. IET Circuits Devices Syst. 3(4), 204–221 (2009).  https://doi.org/10.1049/iet-cds.2008.0275 CrossRefGoogle Scholar
  8. 8.
    C. Cakir, U. Cam, O. Cicekoglu, Novel all pass filter configuration employing single OTRA. IEEE Trans. Circuits Syst. 52(3), 122–125 (2005).  https://doi.org/10.1109/TCSII.2004.842055 CrossRefGoogle Scholar
  9. 9.
    C. Psychalinos, G. Souliotis, A log domain multiphase sinusoidal oscillator. Int. J. Electron. Commun. 62, 622–626 (2008).  https://doi.org/10.1016/j.aeue.2007.07.009 CrossRefGoogle Scholar
  10. 10.
    T.S.A. Ragheb, A.M. Soliman, New square root domain oscillators. Analog Integr. Circuit Signal Process. 47, 165–168 (2006).  https://doi.org/10.1007/s10470-006-3866-9 CrossRefGoogle Scholar
  11. 11.
    A.M. Soliman, Generation of oscillators from current mode band pass filters using single output ICCII. J. Act. Passive Electron. Devices 6, 251–264 (2011)Google Scholar
  12. 12.
    A.M. Soliman, A.S. Elwakil, Wien oscillators using current conveyors. Comput. Electr. Eng. 25, 45–55 (1999).  https://doi.org/10.1016/S0045-7906(98)00025-1 CrossRefGoogle Scholar
  13. 13.
    N. Pandey, P. Kumar, J. Choudhary, Current controlled differential difference current conveyor transconductance amplifier and its application as wave active filter. ISRN Electron. (2013).  https://doi.org/10.1155/2013/968749 Google Scholar
  14. 14.
    A.K. Kushwaha, S.K. Paul, Current mode universal filter using single current controlled differential difference current conveyor transconductance amplifier. Circuit Syst 6, 224–236 (2015).  https://doi.org/10.4236/cs.2015.610023 CrossRefGoogle Scholar
  15. 15.
    P. Prommee, M. Somdunyakanok, CMOS-based current controlled DDCC and its applications to capacitance multiplier and universal filter. Int. J. Electron. Commun. 65, 1–8 (2011).  https://doi.org/10.1016/j.aeue.2009.12.002 CrossRefGoogle Scholar
  16. 16.
    A. Ranjan, S.K. Paul, A generalized current mode first order filter using single current controlled differential difference current conveyor, in 5th International Conference on Computer and Devices for Communication (CODEC) (2012), pp. 1–4. http://doi.org/10.1109/CODEC.2012.6509211
  17. 17.
    M. Siripruchyanun, W. Jaikla, Current controlled current conveyor transconductance amplifier (CCCCTA): a building block for analog signal processing. Electr. Eng. 90, 443–453 (2008).  https://doi.org/10.1007/s00202-007-0095-x CrossRefGoogle Scholar
  18. 18.
    A. Jantakun, Current-mode quadrature oscillator using CCCCTAs with non-interactive current control for CO, FO and amplitude. J. Microelectron. Electron. Compon. Mater. 45(1), 47–56 (2015)Google Scholar
  19. 19.
    N. Pandey, S.K. Paul, Differential difference current conveyor transconductance amplifier (DDCCTA): a new analog building block for signal processing. J. Electr. Comput. Eng. (2011).  https://doi.org/10.1155/2011/361384 Google Scholar
  20. 20.
    V.J. Macaitis, M.J. Charlamov, V. Barzdenas, A 3.0–3.6 GHz LC-VCO with ETSPC frequency divider in 0.18-micron CMOS technology. J. Microelectron. Electron. Compon. Mater. 46(1), 36–41 (2016)Google Scholar
  21. 21.
    S.B. Salem, A.B. Saied, D.S. Masmoudi, High-performance current-controlled quadrature oscillator using an optimized CCII. J. Microelectron. Electron. Compon. Mater. 46(2), 91–99 (2016)Google Scholar
  22. 22.
    W. Tangsrirat, Voltage-mode analog PID controller using a single Z-copy current follower transconductance amplifier (ZC-CFTA). J. Microelectron. Electron. Compon. Mater. 45(3), 175–179 (2015)Google Scholar
  23. 23.
    M.T. Abuelma’atti, A.A. Farooqi, S.M. Alshahrani, Novel RC oscillators using the current feedback operational amplifier. IEEE Trans. Circuits Syst. 43, 155–157 (1996).  https://doi.org/10.1109/81.486438 CrossRefGoogle Scholar
  24. 24.
    U. Cam, A. Toker, O. Cicekoglu, H. Kuntman, Current mode high output impedance sinusoidal oscillator configuration employing single FTFN. Analog Integr. Circuit Signal Process. 24, 231–238 (2000).  https://doi.org/10.1023/A:1008365726144 CrossRefGoogle Scholar
  25. 25.
    A. Toker, H. Kuntman, O. Cicekoglu, M. Discigilm, New oscillator topologies using inverting second-generation current conveyors. Turk. J. Electr. Eng. 10, 119–129 (2002)Google Scholar
  26. 26.
    U. Cam, A novel single resistance controlled sinusoidal oscillator employing single operational transresistance amplifier. Analog Integr. Circuit Signal Process. 32, 183–186 (2002).  https://doi.org/10.1023/A:1019586328253 CrossRefGoogle Scholar
  27. 27.
    W. Tangsrirat, W. Surakampontorn, Single resistance controlled quadrature oscillator and universal biquad filter using CFOAs. Int. J. Electron. Commun. 63, 1080–1086 (2009).  https://doi.org/10.1016/j.aeue.2008.08.006 CrossRefGoogle Scholar
  28. 28.
    D.R. Bhaskar, K.K. Abdalla, R. Senani, New SRCO with explicit current-mode output using two CCs and grounded capacitors. Turk. J. Electr. Eng. Comput. Sci. 19, 235–242 (2011).  https://doi.org/10.3906/elk-0912-11 Google Scholar
  29. 29.
    A. Kumar, M. Ghosh, A. Ranjan, S.K. Paul, Current conveyor based CMOS sinusoidal oscillator. J. Act. Passive Electron. Devices 7, 173–179 (2012)Google Scholar
  30. 30.
    D. Prasad, D.R. Bhaskar, Electronically controllable explicit current output sinusoidal oscillator employing single VDTA. ISRN Electron. (2012).  https://doi.org/10.5402/2012/382560 Google Scholar
  31. 31.
    H.C. Chien, J.M. Wang, Dual mode resistorless sinusoidal oscillator using single CCCDTA. Microelectron. J. 44, 216–224 (2013).  https://doi.org/10.1016/j.mejo.2012.12.007 CrossRefGoogle Scholar
  32. 32.
    K.L. Pushkar, D.R. Bhaskar, D. Prasad, Single resistance controlled sinusoidal oscillator using single VD-DIBA. Act. Passive Electron. Compon. (2013).  https://doi.org/10.1155/2013/971936 Google Scholar
  33. 33.
    D. Prasad, D.R. Bhaskar, K.L. Pushkar, Electronically controllable sinusoidal oscillator employing CMOS VD-DIBAs. ISRN Electron. (2013).  https://doi.org/10.1155/2013/823630 Google Scholar
  34. 34.
    Y. Li, Three current-mode wien bridge oscillators using single modified current controlled current differencing transconductance amplifier. Lect. Notes Electr. Eng. 237, 693–700 (2014).  https://doi.org/10.1007/978-3-319-01273-5_77 CrossRefGoogle Scholar
  35. 35.
    R. Pandey, N. Pandey, G. Komanapalli, A.K. Singh, R. Anurag, New realizations of OTRA based sinusoidal oscillator, in International Conference on Signal Processing and Integrated Networks (2015), pp. 913–916. http://doi.org/10.1109/SPIN.2015.7095323
  36. 36.
    M.T. Abuelma’atti, E.S. Alsuhaibani, New current-feedback operational-amplifier based sinusoidal oscillators with explicit current outputs. Analog Integr. Circuit Signal Process. 85, 513–523 (2015).  https://doi.org/10.1007/s10470-015-0640-x CrossRefGoogle Scholar
  37. 37.
    D.R. Bhaskar, D. Prasad, R. Senani, M.K. Jain, V.K. Singh, D.K. Srivastava, New fully-uncoupled current-controlled sinusoidal oscillator employing grounded capacitors. Am. J. Electr. Electron. Eng. 4, 81–84 (2016).  https://doi.org/10.12691/ajeee-4-3-2 Google Scholar
  38. 38.
    H.C. Chien, Current mode resistorless sinusoidal oscillator and a dual phase square wave generator using current controlled current differencing transconductance amplifier and grounded capacitor. Indian J. Eng. Mater. Sci. 23, 7–19 (2016)Google Scholar
  39. 39.
    K.L. Pushkar, R.K. Goel, K. Gupta, P. Vivek, J. Ashraf, New VD-DIBA based single-resistance controlled sinusoidal oscillator. Circuits Syst. 7, 4145–4153 (2016).  https://doi.org/10.4236/cs.2016.713341 CrossRefGoogle Scholar
  40. 40.
    P. Uttaphut, New current-mode quadrature sinusoidal oscillator using single DVCCTA as active element. Prz. Elektrotechniczny 92, 229–232 (2016).  https://doi.org/10.15199/48.2016.09.56 Google Scholar

Copyright information

© The Institution of Engineers (India) 2019

Authors and Affiliations

  1. 1.Department of Electronics and Telecommunication EngineeringGovernment Engineering CollegeRaipurIndia
  2. 2.Department of Electronics EngineeringIndian Institute of Technology (Indian School of Mines)DhanbadIndia

Personalised recommendations