Transient Frequency Response Improvement in Microgrid Using Virtual Synchronous Machine

  • S. Kumaravel
  • Vinu ThomasEmail author
  • Terence O’Donnel
  • S. Ashok
Original Contribution


Microgrid concept helps to provide reliable electric power by integrating distributed generators based on renewable energy into the power system network. Grid-connected and autonomous modes of operation of microgrids and power electronic converter-based distributed generators make the microgrids to operate in a highly flexible manner. Since many of the microgrids are dominated by converter-based generators as against the rotating synchronous generators, they have a lower amount of rotating inertia. This causes poor transient frequency response in microgrids. Virtual inertia can be provided to microgrids by virtual synchronous machine-based control of converters. In this method, the converter emulates the behaviour of a synchronous machine and provides virtual inertia with the help of the electrical energy storage. Swing equation is used to derive the equivalent power to be delivered by the inverter to the grid. Simulation of the virtual synchronous machine with the grid-connected inverter was carried out in MATLAB/Simulink platform, and the results indicate the satisfactory operation of the proposed control strategy. An experiment on the laboratory scale model of the grid-connected inverter with virtual synchronous machine control strategy was carried out. The control algorithm was implemented in OPAL-RT real-time simulator. The performance of the virtual synchronous machine is compared with droop control, and the difference in performance with the two schemes is analysed.


Droop control Microgrid Swing equation Virtual inertia Virtual synchronous machine 



  1. 1.
    P. Tielens, D. Van Hertem, The relevance of inertia in power systems. Renew. Sustain. Energy Rev. 55, 999–1009 (2016)CrossRefGoogle Scholar
  2. 2.
    H.P. Beck, R. Hesse, Virtual synchronous machine, in 9th International Conference on Electrical Power Quality and Utilisation, EPQU (2007), pp. 1–6Google Scholar
  3. 3.
    J. Driesen, K. Visscher, Virtual synchronous generators, in IEEE Power and Energy Society 2008 General Meeting: Conversion and Delivery of Electrical Energy in the 21st Century, PES (2008), pp. 1–3Google Scholar
  4. 4.
    Q.C. Zhong, G. Weiss, Synchronverters: inverters that mimic synchronous generators. IEEE Trans. Ind. Electron. 58(4), 1259–1267 (2011)CrossRefGoogle Scholar
  5. 5.
    Q.C. Zhong, P.L. Nguyen, Z. Ma, W. Sheng, Self-synchronized synchronverters: inverters without a dedicated synchronization unit. IEEE Trans. Power Electron. 29(2), 617–630 (2014)CrossRefGoogle Scholar
  6. 6.
    S. D’Arco, J.A. Suul, O.B. Fosso, A Virtual Synchronous Machine implementation for distributed control of power converters in SmartGrids. Electr. Power Syst. Res. 122, 180–197 (2015)CrossRefGoogle Scholar
  7. 7.
    T.V. Kumar, V. Thomas, S. Kumaravel, S. Ashok, Performance of virtual synchronous machine in autonomous mode of operation, in 5th International Conference on Renewable Energy: Generation and Applications (ICREGA) (2018), pp. 310–314Google Scholar
  8. 8.
    B.K. Poolla, S. Bolognani, F. Dorfle, Optimal placement of virtual inertia in power grids. IEEE Trans. Autom. Control 62(12), 6209–6220 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    J. Liu, Y. Miura, T. Ise, Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators. IEEE Trans. Power Electron. 31(5), 3600–3611 (2016)CrossRefGoogle Scholar
  10. 10.
    N. Soni, S. Doolla, M.C. Chandorkar, Improvement of transient response in microgrids using virtual inertia. IEEE Trans. Power Deliv. 28(3), 1830–1838 (2013)CrossRefGoogle Scholar
  11. 11.
    J. Alipoor, Y. Miura, T. Ise, Power system stabilization using virtual synchronous generator with alternating moment of inertia. IEEE J. Emerg. Sel. Top. Power Electron. 3(2), 451–458 (2015)CrossRefGoogle Scholar
  12. 12.
    H. Wu, X. Ruan, D. Yang, X. Chen, W. Zhao, Z. Lv, Q.C. Zhong, Small-signal modeling and parameters design for virtual synchronous generators. IEEE Trans. Ind. Electron. 63(7), 4292–4303 (2016)CrossRefGoogle Scholar
  13. 13.
    Y. Hirase, K. Abe, K. Sugimoto, K. Sakimoto, H. Bevrani, T. Ise, A novel control approach for virtual synchronous generators to suppress frequency and voltage fluctuations in microgrids. Appl. Energy 210, 699–710 (2017)CrossRefGoogle Scholar
  14. 14.
    O. Mo, S. D’Arco, J.A. Suul, Evaluation of virtual synchronous machines with dynamic or quasi-stationary machine models. IEEE Trans. Ind. Electron. 64(7), 5952–5962 (2017)CrossRefGoogle Scholar
  15. 15.
    T. Zheng, L. Chen, Y. Guo, S. Mei, Comprehensive control strategy of virtual synchronous generator under unbalanced voltage conditions. IET Gener. Transm. Distrib. 12(7), 1621–1630 (2018)CrossRefGoogle Scholar
  16. 16.
    J. Liu, Y. Miura, H. Bevrani, T. Ise, Enhanced virtual synchronous generator control for parallel inverters in microgrids. IEEE Trans. Smart Grid 8(5), 2268–2277 (2017)CrossRefGoogle Scholar
  17. 17.
    D. Li, Q. Zhu, S. Lin, X.Y. Bian, A self-adaptive inertia and damping combination control of VSG to support frequency stability. IEEE Trans. Energy Convers. 32(1), 397–398 (2017)CrossRefGoogle Scholar
  18. 18.
    D. Chen, Y. Xu, A.Q. Huang, Integration of DC microgrids as virtual synchronous machines into the AC grid. Ind. Electron. IEEE Trans. 64(9), 7455–7466 (2017)CrossRefGoogle Scholar
  19. 19.
    J. Liu, M.J. Hossain, J. Lu, F.H.M. Rafi, H. Li, A hybrid AC/DC microgrid control system based on a virtual synchronous generator for smooth transient performances. Electr. Power Syst. Res. 162, 169–182 (2018)CrossRefGoogle Scholar
  20. 20.
    S. Mishra, D. Pullaguram, S. Achary Buragappu, D. Ramasubramanian, Single-phase synchronverter for a grid-connected roof top photovoltaic system. IET Renew. Power Gener. 10(8), 1187–1194 (2016)CrossRefGoogle Scholar
  21. 21.
    H. Alrajhi Alsiraji, R. El-Shatshat, Comprehensive assessment of virtual synchronous machine based voltage source converter controllers. IET Gener. Transm. Distrib. 11(7), 1762–1769 (2017)CrossRefGoogle Scholar
  22. 22.
    B.C. Parikshith, V. John, Higher order output filter design for grid connected power converters, in Fifteenth Natl. Power Syst. Conf. (NPSC) (2008), pp. 614–619Google Scholar
  23. 23.
    D.E. Olivares, A. Mehrizi-Sani, A.H. Etemadi, C.A. Canizares, R. Iravani, M. Kazerani, A.H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G.A. Jimenez-Estevez, N.D. Hatziargyriou, Trends in microgrid control. IEEE Trans. Smart Grid 5(4), 1905–1919 (2014)CrossRefGoogle Scholar

Copyright information

© The Institution of Engineers (India) 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNational Institute of Technology CalicutCalicutIndia
  2. 2.Electricity Research CentreUniversity College DublinDublinIreland

Personalised recommendations