Advertisement

A Voltage Stability Index for an Interconnected Power System Based on Network Partitioning Technique

  • Durlav Hazarika
  • Syed Ashique Hussain
Original Contribution

Abstract

The paper presents a method for deriving a new voltage stability index for a power system using network partitioning technique. Network partitioning technique is used to transform the Load Flow Jacobian Matrix of a multi-bus power system into a 2 × 2 Jacobian Matrix referred to a selected bus. Using the elements of this transformed 2 × 2 Jacobian Matrix, a voltage stability index is proposed. IEEE 30 and IEEE 118 bus test systems were adopted to verify the validity of proposed voltage stability index.

Keywords

Network partitioning technique Voltage stability index Power system 

References

  1. 1.
    H.K. Clark, New challenges: voltage stability. IEEE Power Eng. Rev. 10, 33–37 (1990)Google Scholar
  2. 2.
    P. Kessel, H. Glavitsch, Estimating the voltage stability of a power system. IEEE Trans. Power Deliv. 1(3), 346–354 (1986)CrossRefGoogle Scholar
  3. 3.
    A.K. Sinha, D. Hazarika, Comparative study of VSI in a power system. Int. J. Electr. Power Energy Syst. 22(8), 589–596 (2000)CrossRefGoogle Scholar
  4. 4.
    D.P. Kothari, I.J. Nagrath, Modern Power System Analysis, 4th edn. (McGraw-Hill education (India) PVT Ltd, New York, 2011)Google Scholar
  5. 5.
    F. Gubina, B. Strmcnk, Voltage collapse proximity index determination using voltage phaser approach. IEEE Trans. Power Syst. 10(2), 788–793 (1995)CrossRefGoogle Scholar
  6. 6.
    A. Chakrabarti, D.P. Kothari, A.K. Mukhopadhyay, A. De, An Introduction to Reactive Power Control and Voltage Stability in Power Transmission Systems (Prentice-Hall of India, Delhi, 2010)Google Scholar
  7. 7.
    Y. Tamura, H. Mori, S. Lwanoto, Relationship between voltage instability and multiple load flow solutions in electrical system. IEEE Trans. 102(5), 115–1125 (1983)Google Scholar
  8. 8.
    O. Crisan, M. Liu, Voltage collapse prediction using an improved sensitivity approach. Electr. Power Syst. Res. 28(3), 181–190 (1984)CrossRefGoogle Scholar
  9. 9.
    P.A. Lof, G. Anderson, D.J. Hill, VSI of stressed power system. IEEE Trans. PWRS 8(1), 326–335 (1993)Google Scholar
  10. 10.
    A. Tiranuchit, R.J. Thomas, A posturing strategy against voltage instability in electrical power systems. IEEE Trans. PWRS 3(1), 87–93 (1989)Google Scholar
  11. 11.
    V. Ajjarapu, C. Christy, The continuation power flow—a tool for steady state voltage stability analysis. IEEE Trans. Power Syst. 7(1), 416–423 (1992)CrossRefGoogle Scholar
  12. 12.
    A.C. Souza, V.H. Quintana, New technique of network partitioning for voltage collapse margin calculation. IEEE Proc. Gerer. Transm. Distrib. 141(6), 630–636 (1994)CrossRefGoogle Scholar
  13. 13.
    K. Vu, M.M. Begovic, D. Novosel, M.M. Saha, Use of local measurements to estimate voltagestability margin. IEEE Trans. Power Syst. 14(3), 1029–1035 (1999)CrossRefGoogle Scholar
  14. 14.
    M.H. Haque, On-line monitoring of maximum permissible loading of a power system within voltage stability limits. IEE Proc. Gener. Transm. Distrib 150(1), 109–112 (2003)MathSciNetCrossRefGoogle Scholar
  15. 15.
    I. Smon, G. Verbic, F. Gubina, Local voltage-stability index using Tellegen’s theorem. IEEE Trans. Power Syst. 21(3), 1267–1275 (2006)CrossRefGoogle Scholar
  16. 16.
    C. Sandro, G.N. Taranto, A real-time voltage instability identification algorithm based on local phasor measurements. IEEE Trans. Power Syst. 23(3), 1271–1279 (2008)Google Scholar
  17. 17.
    Y. Wang, W. Li, J. Lu, A new node voltage stability index based on local voltage phasors. Electr. Power Syst. Res. 79(1), 265–271 (2009)CrossRefGoogle Scholar
  18. 18.
    F. Aminifar, M. Fotuhi-Firuzabad, A. Safdarian, Optimal PMU placement based on probabilistic cost/benefit analysis. IEEE Trans. Power Syst. 28(1), 566–567 (2013)CrossRefGoogle Scholar
  19. 19.
    A. Pal, G.A. Sanchez-Ayala, V.A. Centeno, J.S. Thorp, A PMU placement scheme ensuring real time monitoring of critical buses of the network. IEEE Trans. Power Deliv. 29(2), 510–517 (2014)CrossRefGoogle Scholar
  20. 20.
    V.S.S. Kumar, D. Thukaram, Approach for multistage placement of phasor measurement units based on stability criteria. IEEE Trans. Power Syst. 31(4), 2714–2725 (2016)CrossRefGoogle Scholar
  21. 21.
    D. Hazarika, B.K. Talukdar, R. Das, Use of local bus measurements for operational planning of a power system. IET Gener. Transm. Distrib. 7(11), 1296–1309 (2013)CrossRefGoogle Scholar
  22. 22.
    D. Hazarika, R. Das, A new method for determining the load margin of an interconnected power system. in 2012 2nd National conference on computational intelligence and signal processing (CISP), Guwahati, 2012, pp. 51–56Google Scholar

Copyright information

© The Institution of Engineers (India) 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringAssam Engineering CollegeGuwahati 781013India

Personalised recommendations