Microstructure Evolution in Ordinary Portland Cement–Metakaolin–Red Mud-Based Ternary Blended Cement

  • R. Rathan RajEmail author
  • J. Brijitta
  • D. Ramachandran
  • E. B. Perumal Pillai
Original Contribution


The microstructure plays a vital role in governing the physical, chemical and strength properties of cement. Hence, microstructure analysis has been carried out by replacing 0% to 14% of the mass of ordinary Portland cement with metakaolin and red mud of different ratios. Studies have also been carried out to understand the effect of blending on the pH of cement paste and its influence on the setting time. The normal consistency of cement and red mud mix is found to be proportional to the percentage of replaced red mud and is attributed to the presence of finer particles in red mud. The cement paste without any addition has the lowest water requirement (28.5%) compared to the cement with metakaolin and red mud. The study shows that the strength of OPC having 80:20 MK:RM blend is high and is attributed to the pozzolanic reaction of MK and the RM particles which imparts filler effects to the concrete.


X-ray diffraction Microstructure Morphology Strength Metakaolin Red mud 



  1. 1.
    A. Hasanbeigi, L. Price, E. Lin, Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: a technical review. Renew. Sustain. Energy Rev. 16, 6220–6238 (2012). CrossRefGoogle Scholar
  2. 2.
    A. Palomo, M.W. Grutzeck, M.T. Blanco, Alkali-activated fly ashes. Cem. Concr. Res. 29, 1323–1329 (1999). CrossRefGoogle Scholar
  3. 3.
    K. Erdoğdu, P. Türker, Effects of fly ash particle size on strength of Portland cement fly ash mortars. Cem. Concr. Res. 28, 1217–1222 (1998). CrossRefGoogle Scholar
  4. 4.
    P. Chindaprasirt, C. Jaturapitakkul, T. Sinsiri, Effect of fly ash fineness on compressive strength and pore size of blended cement paste. Cem. Concr. Compos. 27, 425–428 (2005). CrossRefGoogle Scholar
  5. 5.
    L. Bágel, Strength and pore structure of ternary blended cement mortars containing blast furnace slag and silica fume. Cem. Concr. Res. 28, 1011–1022 (1998). CrossRefGoogle Scholar
  6. 6.
    F. Sajedi, H.A. Razak, The effect of chemical activators on early strength of ordinary Portland cement-slag mortars. Constr. Build. Mater. 24, 1944–1951 (2010). CrossRefGoogle Scholar
  7. 7.
    M. Whittaker, M. Zajac, M. Ben Haha, F. Bullerjahn, L. Black, The role of the alumina content of slag, plus the presence of additional sulfate on the hydration and microstructure of Portland cement-slag blends. Cem. Concr. Res. 66, 91–101 (2014). CrossRefGoogle Scholar
  8. 8.
    D. Pedro, J. de Brito, L. Evangelista, Evaluation of high-performance concrete with recycled aggregates: use of densified silica fume as cement replacement. Constr. Build. Mater. 147, 803–814 (2017). CrossRefGoogle Scholar
  9. 9.
    A.C.A. Muller, K.L. Scrivener, J. Skibsted, A.M. Gajewicz, P.J. McDonald, Influence of silica fume on the microstructure of cement pastes: new insights from 1H NMR relaxometry. Cem. Concr. Res. 74, 116–125 (2015). CrossRefGoogle Scholar
  10. 10.
    M. Nili, A. Ehsani, Investigating the effect of the cement paste and transition zone on strength development of concrete containing nanosilica and silica fume. Mater. Des. 75, 174–183 (2015). CrossRefGoogle Scholar
  11. 11.
    E. Gartner, H. Hirao, A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete. Cem. Concr. Res. 78, 126–142 (2015). CrossRefGoogle Scholar
  12. 12.
    R.S. Almenares, L.M. Vizcaíno, S. Damas, A. Mathieu, A. Alujas, F. Martirena, Industrial calcination of kaolinitic clays to make reactive pozzolans. Case Stud. Constr. Mater. 6, 225–232 (2017). Google Scholar
  13. 13.
    Y. Liu, C. Lin, Y. Wu, Characterization of red mud derived from a combined Bayer Process and bauxite calcination method. J. Hazard. Mater. 146, 255–261 (2007). CrossRefGoogle Scholar
  14. 14.
    J.P. Gonçalves, L.M. Tavares, R.D. Toledo Filho, E.M.R. Fairbairn, Performance evaluation of cement mortars modified with metakaolin or ground brick. Constr. Build. Mater. 23, 1971–1979 (2009). CrossRefGoogle Scholar
  15. 15.
    K. Kaya, S. Soyer-Uzun, Evolution of structural characteristics and compressive strength in red mud-metakaolin based geopolymer systems. Ceram. Int. 42, 7406–7413 (2016). CrossRefGoogle Scholar
  16. 16.
    R. Rathan Raj, E.B. Perumal Pillai, Chloride diffusivity and corrosion resistance of OPC–MK–RM based ternary blended concrete—an experimental investigation. IOP Conf. Ser. Mater. Sci. Eng. 431, 052008 (2018). CrossRefGoogle Scholar
  17. 17.
    N. Ye, J. Yang, S. Liang, Y. Hu, J. Hu, B. Xiao et al., Synthesis and strength optimization of one-part geopolymer based on red mud. Constr. Build. Mater. 111, 317–325 (2016). CrossRefGoogle Scholar
  18. 18.
    R. Rathan Raj, E.B. Perumal Pillai, A.R. Santhakumar, Effective utilization of redmud bauxite waste as a replacement of cement in concrete for environmental conservation. Ecol. Environ. Conserv. 19, 247–255 (2013)Google Scholar
  19. 19.
    R. Rathan Raj, E.B. Perumal Pillai, A.R. Santhakumar, Evaluation and mix design for ternary blended high strength concrete. Procedia Eng. 51, 65–74 (2013). CrossRefGoogle Scholar
  20. 20.
    R. Rathan Raj, E.B. Perumal Pillai, A.R. Santhakumar, Strength and corrosion properties of concrete incorporating metakaolin and redmud. Eur. J. Sci. Res. 91, 569–579 (2012)Google Scholar
  21. 21.
    J. Havdahl, J. Harald, The alkalinity of cementitious pastes with microsilica cured at ambient and elevated temperatures. Nord Concr. Res. Publ. 12, 42–56 (1993)Google Scholar
  22. 22.
    M. Cabeza, A. Collazo, X.R. Nóvoa, M.C. Pérez, Red mud as a corrosion inhibitor for reinforced concrete. J. Corros. Sci. Eng. 6, 1–14 (2003)Google Scholar
  23. 23.
    Z. Li, Z. Ding, Property improvement of Portland cement by incorporating with metakaolin and slag. Cem. Concr. Res. 33, 579–584 (2003). CrossRefGoogle Scholar
  24. 24.
    E. Moulin, P. Blanc, D. Sorrentino, Influence of key cement chemical parameters on the properties of metakaolin blended cements. Cem. Concr. Compos. 23, 463–469 (2001). CrossRefGoogle Scholar
  25. 25.
    E. Badogiannis, G. Kakali, G. Dimopoulou, E. Chaniotakis, S. Tsivilis, Metakaolin as a main cement constituent. Exploitation of poor Greek kaolins. Cem. Concr. Compos. 27, 197–203 (2005). CrossRefGoogle Scholar
  26. 26.
    M.H. Zhang, V.M. Malhotra, Characteristics of a thermally activated alumino-silicate pozzolanic material and its use in concrete. Cem. Concr. Res. 25, 1713–1725 (1995). CrossRefGoogle Scholar
  27. 27.
    F. Curcio, B. DeAngelis, S. Pagliolico, Metakaolin as a pozzolanic microfiller for high-performance mortars. Cem. Concr. Res. 28, 803–809 (1998). CrossRefGoogle Scholar
  28. 28.
    C.-S. Poon, L. Lam, S. Kou, Y.-L. Wong, R. Wong, Rate of pozzolanic reaction of metakaolin in high-performance cement pastes. Cem. Concr. Res. 31, 1301–1306 (2001). CrossRefGoogle Scholar

Copyright information

© The Institution of Engineers (India) 2019

Authors and Affiliations

  1. 1.Department of Civil Engineering, School of EngineeringVels UniversityChennaiIndia
  2. 2.Centre for Nanoscience and NanotechnologySathyabama UniversityChennaiIndia
  3. 3.Veltech Dr. RR and Dr. SR UniversityAvadi, ChennaiIndia

Personalised recommendations