Microanalysis of the Floor Dust Particles in the Classrooms of Tropical Urban Environment

  • Neha Agarwal
  • S. M. Shiva NagendraEmail author
  • Anju Elizbath Peter
  • Deepti Yarpala
Original Contribution


Floor dust particles collected from schools located in tropical urban India were analyzed for morphological characteristics, heavy metals and for assessing the associated health risks. The floor dust particles were collected twice each day (before and after teaching hours) for 12 days from each microenvironment for the analysis. The morphological characteristics of dust particles were found to differ from schools to schools due to their contrasting locations. The total average concentrations of heavy metals such as Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, V, and Zn were found to be higher in KV IIT (school in urban background) (414 ± 182 mg kg−1), followed by KV CLRI (school in urban roadside) (319.8 ± 162.3 mg kg−1) and MGHS (school in industrial area) (96.45 ± 27.93 mg kg−1). Chalk dust, crustal sources, and vehicular exhaust emissions were the significant contributor to floor dust in schools. Health risks of toxic heavy metals due to ingestion, inhalation and dermal contact exposure to school children were assessed. Health risk assessment results indicated that dermal contact exposure to Ba, Cu, Pb, and V could develop non-cancer risks among school children. The inhalation cancer risks of Co, Cr, and Ni were found to be within safe limits.


School Floor dust Morphology Heavy metals Health risk 



We would like to thank the school authorities of KV IIT, KV CLRI and MGHS for providing their support and assistance during monitoring activities. The authors are grateful to Sophisticated Analytical Instruments Facility (SAIF) staff, Indian Institute of Technology Madras, Chennai, India, for sample analysis.

Supplementary material

40030_2019_362_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 15 kb)


  1. 1.
    S. Batterman, L. Du, G. Mentz, B. Mukherjee, E. Parker, C. Godwin, J.-Y. Chin, A. O’toole, T. Robins, Z. Rowe, T. Lewis, Particulate matter concentrations in residences : an intervention study evaluating stand-alone filters and air conditioners. Indoor Air 22(3), 235–252 (2012)CrossRefGoogle Scholar
  2. 2.
    J.M. Lim, J.H. Jeong, J.H. Lee, J.H. Moon, Y.S. Chung, K.H. Kim, The analysis of PM2. 5 and associated elements and their indoor/outdoor pollution status in an urban area. Indoor Air 21(2), 145–155 (2011)CrossRefGoogle Scholar
  3. 3.
    U. Franck, O. Herbarth, S. Röder, U. Schlink, M. Borte, U. Diez, U. Krämer, I. Lehmann, Respiratory effects of indoor particles in young children are size dependent. Sci. Total Environ. 409(9), 1621–1631 (2011)CrossRefGoogle Scholar
  4. 4.
    V.S. Chithra, S.M. Shiva Nagendra, Chemical and morphological characteristics of indoor and outdoor particulate matter in an urban environment. Atmos. Environ. 77, 579–587 (2013)CrossRefGoogle Scholar
  5. 5.
    R. Goyal, M. Khare, Indoor–outdoor concentrations of RSPM in classroom of a naturally ventilated school building near an urban traffic roadway. Atmos. Environ. 43(38), 6026–6038 (2009)CrossRefGoogle Scholar
  6. 6.
    H. Chen, X. Lu, L.Y. Li, Spatial distribution and risk assessment of metals in dust based on samples from nursery and primary schools of Xi’an, China. Atmos. Environ. 88, 172–182 (2014)CrossRefGoogle Scholar
  7. 7.
    X. Lu, X. Zhang, L.Y. Li, H. Chen, Assessment of metals pollution and health risk in dust from nursery schools in Xi’ an, China. Environ. Res. 128, 27–34 (2014)CrossRefGoogle Scholar
  8. 8.
    S.M. Almeida, N. Canha, A. Silva, M. do Carmo Freitas, P. Pegas, C. Alves, M. Evtyugina, C.A. Pio, Children exposure to atmospheric particles in indoor of Lisbon primary schools. Atmos. Environ. 45(40), 7594–7599 (2011)CrossRefGoogle Scholar
  9. 9.
    J. Madureira, I. Paciência, J. Rufo, E. Ramos, H. Barros, J.P. Teixeira, E. de Oliveira Fernandes, Indoor air quality in schools and its relationship with children’ s respiratory symptoms. Atmos. Environ. 118, 145–156 (2015)CrossRefGoogle Scholar
  10. 10.
    M.J. Mendell, G.A. Heath, Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature. Indoor Air 15(1), 27–52 (2005)CrossRefGoogle Scholar
  11. 11.
    C. Wang, C. Chang, S. Tsai, H. Chiang, C. Wang, C. Chang, S. Tsai, Characteristics of Road dust from different sampling sites in Northern Taiwan. J Air Waste Manag Assoc 55(8), 1236–1244 (2005)CrossRefGoogle Scholar
  12. 12.
    E. Liu, T. Yan, G. Birch, Y. Zhu, Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Sci. Total Environ. 476–477, 522–531 (2014)CrossRefGoogle Scholar
  13. 13.
    J.M. Trujillo-gonzález, M.A. Torres-mora, S. Keesstra, E.C. Brevik, R. Jiménez-ballesta, Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Sci. Total Environ. 553, 636–642 (2016)CrossRefGoogle Scholar
  14. 14.
    S. Kamal, M. Hassan, Metal concentrations and distribution in the household, stairs and entryway dust of some Egyptian homes. Atmos. Environ. 54, 207–215 (2012)CrossRefGoogle Scholar
  15. 15.
    G. Chattopadhyay, K.C. Lin, A.J. Feitz, Household dust metal levels in the Sydney metropolitan area. Environ. Res. 93, 301–307 (2003)CrossRefGoogle Scholar
  16. 16.
    M.A.S. Laidlaw, M.P. Taylor, Potential for childhood lead poisoning in the inner cities of Australia due to exposure to lead in soil dust. Environ. Pollut. 159(1), 1–9 (2011)CrossRefGoogle Scholar
  17. 17.
    G. Shi, Z. Chen, S. Xu, J. Zhang, L. Wang, C. Bi, J. Teng, Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environ. Pollut. 156(2), 251–260 (2008)CrossRefGoogle Scholar
  18. 18.
    X. Chen, X. Lu, G. Yang, Catena Sources identification of heavy metals in urban topsoil from inside the Xi’an Second Ringroad, NW China using multivariate statistical methods. CATENA 98, 73–78 (2012)CrossRefGoogle Scholar
  19. 19.
    R. Goyal, M. Khare, Indoor air quality modeling for PM10, PM2.5, and PM1.0 in naturally ventilated classrooms of an urban Indian school building. Environ. Monit. Assess. 176(1–4), 501–516 (2011)CrossRefGoogle Scholar
  20. 20.
    Y. Zhang, Z. Yang, R. Li, H. Geng, C. Dong, Chemosphere Investigation of fine chalk dust particles’ chemical compositions and toxicities on alveolar macrophages in vitro. Chemosphere 120, 500–506 (2015)CrossRefGoogle Scholar
  21. 21.
    M. Thakker, P. Shukla, D.O. Shah, Surface and colloidal properties of chalks: a novel approach using surfactants to convert normal chalks into dustless chalks. Colloids Surf. A: Physicochem. Eng. Asp. 480, 236–244 (2015)CrossRefGoogle Scholar
  22. 22.
    B. Srimuruganandam, S.M. ShivaNagendra, Characteristics of particulate matter and heterogeneous traffic in the urban area of India. Atmos. Environ. 45(18), 3091–3102 (2011)CrossRefGoogle Scholar
  23. 23.
    D. ASTM, Standard practice for collection of dust from carpeted floors for chemical analysis (1994)Google Scholar
  24. 24.
    U.S. EPA, Risk assessment guidance for superfund volume I: human health evaluation manual (part F, supplemental guidance for inhalation risk assessment) (2009)Google Scholar
  25. 25.
    R.K. Marwaha, N. Tandon, M.A. Ganie, R. Kanwar, C. Shivaprasad, A. Sabharwal, K. Bhadra, A. Narang, Nationwide reference data for height, weight and body mass index of Indian schoolchildren. Natl. Med. J. India 24(5), 269–277 (2011)Google Scholar
  26. 26.
    U.S. EPA, Supplemental guidance for developing soil screening levels for superfund sites supplemental guidance for developing soil screening levels for superfund sites. OSWER 9355.4-24, 2002 (2001)Google Scholar
  27. 27.
    S. Izhar, A. Goel, A. Chakraborty, T. Gupta, Annual trends in occurrence of submicron particles in ambient air and health risk posed by particle bound metals. Chemosphere 146, 582–590 (2016)CrossRefGoogle Scholar
  28. 28.
    H. Furutani, J. Jung, K. Miura, A. Takami, S. Kato, Y. Kajii, M. Uematsu, Single-particle chemical characterization and source apportionment of iron-containing atmospheric aerosols in Asian outflow. J. Geophys. Res. Atmos. 116(18), 1–17 (2011)Google Scholar
  29. 29.
    S. Oeder, S. Dietrich, I. Weichenmeier, W. Schober, G. Pusch, R.A. Jörres, R. Schierl, D. Nowak, H. Fromme, H. Behrendt, J. Buters, Toxicity and elemental composition of particulate matter from outdoor and indoor air of elementary schools in Munich, Germany. Indoor Air 22, 148–158 (2012)CrossRefGoogle Scholar
  30. 30.
    S.K. Guttikunda, R. Goel, Health impacts of particulate pollution in a megacity-Delhi, India. Environ. Dev. 6(1), 8–20 (2013)CrossRefGoogle Scholar
  31. 31.
    S. Goel, R. Patidar, K. Baxi, Indoor and Built Investigation of particulate matter performances in relation to chalk selection in classroom environment. Indoor Built Environ. 26(1), 119–131 (2017)CrossRefGoogle Scholar
  32. 32.
    I. Tegen, K.E. Kohfeld, Atmospheric transport of silicon. The silicon cycle: human perturbations and impacts on aquatic systems. vol. 66, p. 81 (2006)Google Scholar
  33. 33.
    A.K. Krishna, P.K. Govil, Assessment of heavy metal contamination in soils around Manali industrial area, Chennai, Southern India. Environ. Geol. 54(7), 1465–1472 (2008)CrossRefGoogle Scholar
  34. 34.
    H. Fromme, J. Diemer, S. Dietrich, J. Cyrys, J. Heinrich, W. Lang, M. Kiranoglu, D. Twardella, Chemical and morphological properties of particulate matter (PM10, PM2.5) in school classrooms and outdoor air. Atmos. Environ. 42(27), 6597–6605 (2008)CrossRefGoogle Scholar
  35. 35.
    M. Monitha, C. Jayakumar, N.G. Nagendra, Environmental toxicology-assessment and remediation of toxic metals in soil. Int. J. Environ. Biol. 2(2), 59–66 (2012)Google Scholar
  36. 36.
    K. Adachi, Y. Tainosho, Characterization of heavy metal particles embedded in tire dust. Environ. Int. 30(8), 1009–1017 (2004)CrossRefGoogle Scholar
  37. 37.
    R.K. Xie, H.M. Seip, J.R. Leinum, T. Winje, J.S. Xiao, Chemical characterization of individual particles (PM10) from ambient air in Guiyang City, China. Sci. Total Environ. 343(1–3), 261–272 (2005)CrossRefGoogle Scholar
  38. 38.
    H. Bladt, J. Schmid, E.D. Kireeva, O.B. Popovicheva, N.M. Perseantseva, M.A. Timofeev, K. Heister, J. Uihlein, N.P. Ivleva, R. Niessner, Impact of Fe content in laboratory-produced soot aerosol on its composition, structure, and thermo-chemical properties. Aerosol Sci. Technol. 46(12), 1337–1348 (2012)CrossRefGoogle Scholar
  39. 39.
    S. Naz, A. Page, K.E. Agho, Household air pollution and under-five mortality in India (1992–2006). Environ. Health 15(1), 54 (2016)CrossRefGoogle Scholar
  40. 40.
    European Environment Agency, EMEP/EEA Emission Inventory Guidebook 2009 (2009)Google Scholar
  41. 41.
    N. Agarwal, S.M.S. Nagendra, Modelling of particulate matters distribution inside the multilevel urban classrooms in tropical climate for exposure assessment. Build. Environ. 102, 73–82 (2016)CrossRefGoogle Scholar
  42. 42.
    S.M.S. Nagendra, A.E. Peter, J.S. Menon, A.B. Akolkar, Microanalysis and source apportionment of particulate emissions from anthropogenic sources in two Indian cities, in Air Pollution XXVI, vol 230 (2018), pp. 51–63Google Scholar
  43. 43.
    B.P. Lanphear, R. Hornung, J. Khoury, K. Yolton, P. Baghurst, D.C. Bellinger, R.L. Canfield, K.N. Dietrich, R. Bornschein, T. Greene, S.J. Rothenberg, H.L. Needleman, L. Schnaas, G. Wasserman, J. Graziano, R. Roberts, Low-level environmental lead exposure and children’ s intellectual function: an international pooled analysis. Environ. Health Perspect. 113(7), 894–899 (2005)CrossRefGoogle Scholar
  44. 44.
    K.J. Godri, R.M. Harrison, T. Evans, T. Baker, C. Dunster, I.S. Mudway, F.J. Kelly, Increased oxidative burden associated with traffic component of ambient particulate matter at roadside and urban background schools sites in London. PLoS ONE 6(7), e21961 (2011)CrossRefGoogle Scholar
  45. 45.
    W.J. Gauderman, H. Vora, R. McConnell, K. Berhane, F. Gilliland, D. Thomas, F. Lurmann, E. Avol, N. Kunzli, M. Jerrett, J. Peters, Effect of exposure to traffic on lung development from 10 to 18 years of age: a cohort study. Lancet 369(9561), 571–5777 (2007)CrossRefGoogle Scholar

Copyright information

© The Institution of Engineers (India) 2019

Authors and Affiliations

  • Neha Agarwal
    • 1
  • S. M. Shiva Nagendra
    • 1
    • 2
    Email author
  • Anju Elizbath Peter
    • 1
  • Deepti Yarpala
    • 1
  1. 1.Environmental and Water Resource Engineering Division, Department of Civil EngineeringIndian Institute of Technology MadrasChennaiIndia
  2. 2.Environmental and Water Resource Engineering Division, Department of Civil EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations