Advertisement

Influence of Supporting Electrolytes on Electrochemical Treatability of Reactive Black 5 Using Dimensionally Stable Anode

  • Priya SaxenaEmail author
  • Jayesh Ruparelia
Original Contribution
  • 34 Downloads

Abstract

Dye wastewaters contain significant amounts of toxic organic species and intense color. Electrochemical oxidation has a proven potential to degrade these bio-resistant pollutants. This paper presents the results of indirect electrochemical oxidation of Reactive Black 5 (RB 5) recalcitrant dye wastewater using NaCl, KBr and Na2SO4 as supporting electrolytes. The studies were performed in an undivided batch reactor using indigenously prepared Ti/CoOx–RuO2–SnO2–Sb2O5 electrode classified as dimensionally stable anode (DSA). Characterization of the catalytic coating was performed using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive X-ray (EDAX) analysis. Similar operating conditions like electrolyte concentration, pH, current density and electrolysis time were used for all studies. The progress of dye degradation was monitored by estimating reduction in chemical oxygen demand (COD), total organic carbon (TOC) and color. Other performance indicators like average current efficiency (ACE) and energy consumption (EC) were also analyzed. The rate of COD removal followed pseudo-first-order kinetics. The present investigation exhibited highest treatment effectiveness in the presence of chloride compared to bromide and sulfate as degradation was dependent on the generation of highly electroactive oxidative species.

Keywords

Reactive Black 5 Electrochemical Supporting electrolytes DSA Characterization 

References

  1. 1.
    N. Mohan, N. Balasubramanian, C.A. Basha, Electrochemical oxidation of textile wastewater and its reuse. J. Hazard. Mater. 147(1–2), 644–651 (2007)CrossRefGoogle Scholar
  2. 2.
    M. Panizza, G. Cerisola, Removal of colour and COD from wastewater containing acid blue 22 by electrochemical oxidation. J. Hazard. Mater. 153(1–2), 83–88 (2008)CrossRefGoogle Scholar
  3. 3.
    A.I. del Rio, M.J. Benimeli, J. Molina, J. Bonastre, F. Cases, Electrochemical treatment of C.I. reactive black 5 solutions on stabilized doped Ti/SnO2 electrodes. Int. J. Electrochem. Sci. 7(12), 13074–13092 (2012)Google Scholar
  4. 4.
    E. Chatzisymeon, N.P. Xekoukoulotakis, A. Coz, N. Kalogerakis, D. Mantzavinos, Electrochemical treatment of textile dyes and dyehouse effluents. J. Hazard. Mater. 137(2), 998–1007 (2006)CrossRefGoogle Scholar
  5. 5.
    R.G. Da Silva, S.A. Neto, A.R. De Andrade, Electrochemical degradation of reactive dyes at different DSA® compositions. J. Braz. Chem. Soc. 22(1), 126–133 (2011)CrossRefGoogle Scholar
  6. 6.
    A.J. Mendez-Martinez, M.M. Davila-Jimenez, O. Ornelas-Davila, M.P. Elizalde-Gonzalez, U. Arroyo-Abad, I. Sires, E. Brillas, Electrochemical reduction and oxidation pathways for Reactive Black 5 dye using nickel electrodes in divided and undivided cells. Electrochim. Acta 59, 140–149 (2012)CrossRefGoogle Scholar
  7. 7.
    E. Brillas, C.A. Martínez-Huitle, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl. Catal. B Environ. 166–167, 603–643 (2015)CrossRefGoogle Scholar
  8. 8.
    H. Jalife-Jacobo, R. Feria-Reyes, O. Serrano-Torres, S. Gutierrez-Granados, J.M. Peralta-Hernandez, Diazo dye Congo Red degradation using a Boron-doped diamond anode: an experimental study on the effect of supporting electrolytes. J. Hazard. Mater. 319, 78–83 (2016)CrossRefGoogle Scholar
  9. 9.
    S. Aquino Neto, A.R. de Andrade, Electrooxidation of glyphosate herbicide at different DSA®compositions: pH, concentration and supporting electrolyte effect. Electrochim. Acta 54(7), 2039–2045 (2009)CrossRefGoogle Scholar
  10. 10.
    M.S. Morsi, A.A. Al-Sarawy, W.A.S. El-Dein, Electrochemical degradation of some organic dyes by electrochemical oxidation on a Pb/PbO2 electrode. Desalin. Water Treat. 26(1–3), 301–308 (2011)CrossRefGoogle Scholar
  11. 11.
    A. Uranga-Flores, C. De La Rosa-Juarez, S. Gutierrez-Granados, D.C. De Moura, C.A. Martinez-Huitle, J.M. Peralta Hernández, Electrochemical promotion of strong oxidants to degrade Acid Red 211: effect of supporting electrolytes. J. Electroanal. Chem. 738, 84–91 (2015)CrossRefGoogle Scholar
  12. 12.
    F.L. Guzman-Duque, R.E. Palma-Goyes, I. Gonzalez, G. Penuela, R.A. Torres-Palma, Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water. J. Hazard. Mater. 278, 221–226 (2014)CrossRefGoogle Scholar
  13. 13.
    D. Rajkumar, K. Palanivelu, N. Mohan, Electrochemical degradation of resorcinol using mixed oxide coated titanium electrode for wastewater treatment—a kinetic study. Indian J. Chem. Technol. 10, 396–401 (2003)Google Scholar
  14. 14.
    C.A. Martinez-Huitle, E. Brillas, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl. Catal. B Environ. 87(3–4), 105–145 (2009)CrossRefGoogle Scholar
  15. 15.
    W. Wu, Z.H. Huang, T.T. Lim, Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water. Appl. Catal. A Gen. 480, 58–78 (2014)CrossRefGoogle Scholar
  16. 16.
    S. Garcia-Segura, J.D. Ocon, M.N. Chong, Electrochemical oxidation remediation of real wastewater effluents—a review. Process Saf. Environ. Prot. 113, 48–67 (2018)CrossRefGoogle Scholar
  17. 17.
    F.C. Moreira, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar, Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Appl. Catal. B Environ. 202, 217–261 (2017)CrossRefGoogle Scholar
  18. 18.
    D. Rajkumar, J.G. Kim, K.K. Kim, A study on electrochemical oxidation of catechol in chloride medium for wastewater treatment application. Environ. Eng. Res. 9(6), 279–287 (2004)CrossRefGoogle Scholar
  19. 19.
    V.M. Vasconcelos, F.L. Ribeiro, F.L. Migliorini, S.A. Alves, J.R. Steter, M.R. Baldan, N.G. Ferreira, M.R.V. Lanza, Electrochemical removal of Reactive Black 5 azo dye using non-commercial boron-doped diamond film anodes. Electrochim. Acta 178, 484–493 (2015)CrossRefGoogle Scholar
  20. 20.
    C.R. Costa, C.M.R. Botta, E.L.G. Espindola, P. Olivi, Electrochemical treatment of tannery wastewater using DSA® electrodes. J. Hazard. Mater. 153, 616–627 (2008)CrossRefGoogle Scholar
  21. 21.
    H. Bai, P. He, J. Chen, K. Liu, H. Lei, X. Zhang, F. Dong, H. Li, Electrocatalytic degradation of bromocresol green wastewater on Ti/SnO2–RuO2 electrode. Water Sci. Technol. 77(7), 1–8 (2016)Google Scholar
  22. 22.
    S. Chen, Y. Zheng, S. Wang, X. Chen, Ti/RuO2–Sb2O5–SnO2 electrodes for chlorine evolution from seawater. J. Chem. Eng. 172, 47–51 (2011)CrossRefGoogle Scholar
  23. 23.
    Y. Zhang, C. Meng, Facile fabrication of Fe3O4 and Co3O4 microspheres and their influence on the thermal decomposition of ammonium perchlorate. J. Alloys Compd. 674, 259–265 (2016)CrossRefGoogle Scholar
  24. 24.
    A.K. Srivastava, B. Yadav, Humidity sensing properties of TiO2–Sb2O5 nanocomposite. Mater. Sci. 28, 491–502 (2010)Google Scholar
  25. 25.
    A.N. Subba Rao, V.T. Venkatarangaiah, Metal oxide-coated anodes in wastewater treatment. Environ. Sci. Pollut. Res. 21(5), 3197–3217 (2014)CrossRefGoogle Scholar
  26. 26.
    D. Rajkumar, J.G. Kim, Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment. J. Hazard. Mater. 136(2), 203–212 (2006)CrossRefGoogle Scholar
  27. 27.
    A.H. Gemeay, Kinetics and mechanism of the reduction of some azo-dyes by inorganic oxysulfur compounds. Dyes Pigments 54(3), 201–212 (2002)CrossRefGoogle Scholar
  28. 28.
    F.L. Souza, D.W. Miwa, M.A. Rodrigo, A.J. Motheo, Electrochemical degradation of dimethyl phthalate ester on a DSA® electrode. Braz. Chem. Soc. 25(3), 492–501 (2014)Google Scholar
  29. 29.
    M. Sun, G.V. Lowry, K.B. Gregory, Selective oxidation of bromide in wastewater brines from hydraulic fracturing. Water Res. 47(11), 3723–3731 (2013)CrossRefGoogle Scholar
  30. 30.
    G. Bhaskar Raju, M. Thalamadai Karuppiah, S.S. Latha, D. Latha Priya, S. Parvathy, S. Prabhakar, Electrochemical pretreatment of textile effluents and effect of electrode materials on the removal of organics. Desalination 249(1), 167–174 (2009)CrossRefGoogle Scholar
  31. 31.
    M. Holcapek, K. Volna, D. Vanerkova, Effects of functional groups on the fragmentation of dyes in electrospray and atmospheric pressure chemical ionization mass spectra. Dyes Pigments 75(1), 156–165 (2007)CrossRefGoogle Scholar
  32. 32.
    D. Vanerkova, A. Sakalis, M. Holcapek, P. Jandera, A. Voulgaropoulos, Analysis of electrochemical degradation products of sulphonated azo dyes using high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 20, 2807–2815 (2006)CrossRefGoogle Scholar
  33. 33.
    D. Jager, D. Kupka, M. Vaclavikova, L. Ivanicova, G. Gallios, Degradation of Reactive Black 5 by electrochemical oxidation. Chemosphere 190, 405–416 (2018)CrossRefGoogle Scholar

Copyright information

© The Institution of Engineers (India) 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Institute of TechnologyNirma UniversityAhmedabadIndia

Personalised recommendations