Advertisement

Potential Anticancer Activity of Caspian Cobra Venom Through Induction of Oxidative Stress in Glioblastoma Cell Line

  • Niloufar Sinaei
  • Abbas Zare Mirakabadi
  • Behzad Behnam
  • Azadeh Aminzadeh
  • Somayyeh Karami-Mohajeri
Research Article
  • 15 Downloads

Abstract

Despite advances in therapeutic strategies in the management of cancer, malignant glioma remains difficult to treat due to progressive resistance to conventional drugs. New studies made efforts to develop new anticancer agents from the screening of natural compounds. The biodiversity of venoms and their bioactive toxins makes them a special source for the development of novel therapeutic agents. The aim of the present study was to investigate the effect of Naja naja oxiana (NNO) crude venom on U87MG glioma cell line. Cellular viability and the generated amount of reactive oxygen species were determined by MTT and redox-sensitive dye DCFH-DA, respectively. A dose-dependent decline in viability of cells along with increase in generation of reactive oxygen species (ROS) occurred after the 24-h exposure to NNO venom. Incubation of RBC with NNO venom for 24 h indicated that hemolysis was not more than 6%. The results showed that NNO venom might act through the production of excess ROS, further disruption of mitochondrial function, and decrease in viability of U87MG without changes in the integrity of RBC membrane. However, more investigations are needed to find out detailed mechanisms by which NNO venom inhibits the viability of U87MG.

Keywords

Caspian cobra venom Naja naja oxiana U87MG glioma cell line Cytotoxicity Reactive oxygen species 

Notes

Acknowledgment

The authors gratefully acknowledge the financial support (Project No.: 96000311) of the Kerman University of Medical Sciences.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, Stroup NE, Kruchko C, Barnholtz-Sloan JS (2013) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro-oncology 15(Suppl 2):ii1–ii56.  https://doi.org/10.1093/neuonc/not151 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh KM, Wrensch MR, Barnholtz-Sloan JS (2014) The epidemiology of glioma in adults: a “state of the science” review. Neuro-oncology 16(7):896–913.  https://doi.org/10.1093/neuonc/nou087 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gkikas C, Ram M, Tsafrakidis P (2016) Latent progression pediatric scrotal schwannoma. A case report. Urol Case Rep 6:21–23.  https://doi.org/10.1016/j.eucr.2015.12.012 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lawson McLean AC, McLean AL, Rosahl SK (2016) Evaluating vestibular schwannoma size and volume on magnetic resonance imaging: an inter- and intra-rater agreement study. Clin Neurol Neurosurg 145:68–73.  https://doi.org/10.1016/j.clineuro.2016.04.010 CrossRefPubMedGoogle Scholar
  5. 5.
    Akef HM (2017) Snake venom: kill and cure. Toxin Rev.  https://doi.org/10.1080/15569543.2017.1399278 CrossRefGoogle Scholar
  6. 6.
    Mukherjee AK (2008) Phospholipase A2-interacting weak neurotoxins from venom of monocled cobra Naja kaouthia display cell-specific cytotoxicity. Toxicon 51(8):1538–1543.  https://doi.org/10.1016/j.toxicon.2008.03.014 CrossRefPubMedGoogle Scholar
  7. 7.
    Song JK, Jo MR, Park MH, Song HS, An BJ, Song MJ, Han SB, Hong JT (2012) Cell growth inhibition and induction of apoptosis by snake venom toxin in ovarian cancer cell via inactivation of nuclear factor kappaB and signal transducer and activator of transcription 3. Arch Pharmacal Res 35(5):867–876.  https://doi.org/10.1007/s12272-012-0512-1 CrossRefGoogle Scholar
  8. 8.
    Ebrahim K, Vatanpour H, Zare A, Shirazi FH, Nakhjavani M (2016) Anticancer activity a of caspian cobra (Naja naja oxiana) snake venom in human cancer cell lines via induction of apoptosis. Iran J Pharm Res 15(Suppl):101–112PubMedPubMedCentralGoogle Scholar
  9. 9.
    Tsetlin VI (2015) Three-finger snake neurotoxins and Ly6 proteins targeting nicotinic acetylcholine receptors: pharmacological tools and endogenous modulators. Trends Pharmacol Sci 36(2):109–123.  https://doi.org/10.1016/j.tips.2014.11.003 CrossRefPubMedGoogle Scholar
  10. 10.
    Fakhri A, Omranipour R, Fakhri S, Mirshamsi M, Zangeneh F, Vatanpour H, Pourahmad J (2017) Naja naja oxiana venom fraction selectively induces ROS-mediated apoptosis in human colorectal tumor cells by directly targeting mitochondria. Asian Pac J Cancer Prev APJCP 18(8):2201–2208.  https://doi.org/10.22034/APJCP.2017.18.8.2201 CrossRefPubMedGoogle Scholar
  11. 11.
    Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48(6):749–762.  https://doi.org/10.1016/j.freeradbiomed.2009.12.022 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Liou GY, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44(5):479–496.  https://doi.org/10.3109/10715761003667554 CrossRefPubMedGoogle Scholar
  13. 13.
    Rucavado A, Escalante T, Gutierrez JM (2004) Effect of the metalloproteinase inhibitor batimastat in the systemic toxicity induced by Bothrops asper snake venom: understanding the role of metalloproteinases in envenomation. Toxicon 43(4):417–424.  https://doi.org/10.1016/j.toxicon.2004.01.016 CrossRefPubMedGoogle Scholar
  14. 14.
    Chiba K, Kawakami K, Tohyama K (1998) Simultaneous evaluation of cell viability by neutral red, MTT and crystal violet staining assays of the same cells. Toxicol In vitro 12(3):251–258CrossRefGoogle Scholar
  15. 15.
    Wu D, Yotnda P (2011) Production and detection of reactive oxygen species (ROS) in cancers. J Vis Exp 57:3357.  https://doi.org/10.3791/3357 CrossRefGoogle Scholar
  16. 16.
    Gasanov SE, Shrivastava IH, Israilov FS, Kim AA, Rylova KA, Zhang B, Dagda RK (2015) Naja naja oxiana cobra venom cytotoxins CTI and CTII disrupt mitochondrial membrane integrity: implications for basic three-fingered cytotoxins. PLoS One 10(6):e0129248.  https://doi.org/10.1371/journal.pone.0129248 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Dan Dunn J, Alvarez LA, Zhang X, Soldati T (2015) Reactive oxygen species and mitochondria: a nexus of cellular homeostasis. Redox Biol 6:472–485.  https://doi.org/10.1016/j.redox.2015.09.005 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Petrosillo G, Ruggiero FM, Paradies G (2003) Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria. FASEB J 17(15):2202–2208.  https://doi.org/10.1096/fj.03-0012com CrossRefPubMedGoogle Scholar
  19. 19.
    Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94(3):909–950.  https://doi.org/10.1152/physrev.00026.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Samel M, Tonismagi K, Ronnholm G, Vija H, Siigur J, Kalkkinen N, Siigur E (2008) L-Amino acid oxidase from Naja naja oxiana venom. Comp Biochem Physiol B: Biochem Mol Biol 149(4):572–580.  https://doi.org/10.1016/j.cbpb.2007.11.008 CrossRefGoogle Scholar
  21. 21.
    Machado ART, Aissa AF, Ribeiro DL, Hernandes LC, Machado CS, Bianchi MLP, Sampaio SV, Antunes LMG (2017) The toxin BjussuLAAO-II induces oxidative stress and DNA damage, upregulates the inflammatory cytokine genes TNF and IL6, and downregulates the apoptotic-related genes BAX, BCL2 and RELA in human Caco-2 cells. Int J Biol Macromol 109:212–219.  https://doi.org/10.1016/j.ijbiomac.2017.12.015 CrossRefPubMedGoogle Scholar
  22. 22.
    Yang CA, Cheng CH, Liu SY, Lo CT, Lee JW, Peng KC (2011) Identification of antibacterial mechanism of L-amino acid oxidase derived from Trichoderma harzianum ETS 323. FEBS J 278(18):3381–3394.  https://doi.org/10.1111/j.1742-4658.2011.08262.x CrossRefPubMedGoogle Scholar
  23. 23.
    Pawelek PD, Cheah J, Coulombe R, Macheroux P, Ghisla S, Vrielink A (2000) The structure of L-amino acid oxidase reveals the substrate trajectory into an enantiomerically conserved active site. EMBO J 19(16):4204–4215.  https://doi.org/10.1093/emboj/19.16.4204 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Guo C, Liu S, Yao Y, Zhang Q, Sun MZ (2012) Past decade study of snake venom L-amino acid oxidase. Toxicon 60(3):302–311.  https://doi.org/10.1016/j.toxicon.2012.05.001 CrossRefPubMedGoogle Scholar
  25. 25.
    Dayal R, Singh A, Pandey A, Mishra KP (2014) Reactive oxygen species as mediator of tumor radiosensitivity. J Cancer Res Ther 10(4):811–818.  https://doi.org/10.4103/0973-1482.146073 CrossRefPubMedGoogle Scholar
  26. 26.
    Maiti AK (2012) Genetic determinants of oxidative stress-mediated sensitization of drug-resistant cancer cells. Int J Cancer 130(1):1–9.  https://doi.org/10.1002/ijc.26306 CrossRefPubMedGoogle Scholar
  27. 27.
    Al-Asmari AK, Riyasdeen A, Al-Shahrani MH, Islam M (2016) Snake venom causes apoptosis by increasing the reactive oxygen species in colorectal and breast cancer cell lines. OncoTargets Ther 9:6485–6498.  https://doi.org/10.2147/OTT.S115055 CrossRefGoogle Scholar
  28. 28.
    Brown GC, Borutaite V (2012) There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells. Mitochondrion 12(1):1–4.  https://doi.org/10.1016/j.mito.2011.02.001 CrossRefPubMedGoogle Scholar
  29. 29.
    van Oeveren W (2013) Obstacles in haemocompatibility testing. Scientifica (Cairo) 2013:392584.  https://doi.org/10.1155/2013/392584 CrossRefGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2018

Authors and Affiliations

  1. 1.Pharmaceutics Research Center, Institute of Neuropharmacology, Faculty of PharmacyKerman University of Medical SciencesKermanIran
  2. 2.Department of Venomous Animals and Antivenom ProductionRazi Vaccine and Serum Research InstituteHesarak, KarajIran

Personalised recommendations