Advertisement

Cytogenotoxicological Effects of the Methanolic Extract of Dysophylla auricularia

  • Muhammad Torequl IslamEmail author
  • Eunus S. Ali
  • Shaikh Jamal Uddin
  • Swati Tripathi
  • Ana Amélia de Carvalho Melo-Cavalcante
  • Siddhartha Kumar MishraEmail author
Research Article
  • 2 Downloads

Abstract

Dysophylla auricularia (L.) Blume. is a medicinal plant of the family Lamiaceae used in the tribal traditional medicinal practice in Bangladesh. The scientific basis of the toxicological effects of the plants is yet to be evaluated. This study evaluated the toxic, cytotoxic and mutagenic non-clinical effects of the methanol extract of D. auricularia (MDA). The cytotoxic effect of MDA was observed on eggs of Artemia salina for 24-h treatment, while the toxic and mutagenic effects in Allium cepa for 48-h treatment. Potassium dichromate (K2Cr2O7) and copper sulfate (CuSO4·5H2O) were used as standard A. salina and A. cepa test systems, respectively. For A. salina test, the MDA and K2Cr2O7 were tested at 6.25–100 µg ml−1, while for A. cepa test MDA and CuSO4·5H2O at 100–500 µg ml−1 and 0.6 µg ml−1, respectively. Results showed that MDA increased mortality in A. salina in a concentration-dependent manner with highest mortality (50 ± 0.71%) at 100 µg ml−1. In A. cepa test also, MDA caused concentration-dependent decrease in percentage of mitotic index with an increased number of non-dividing cells. Moreover, MDA also inhibited the growth of the meristematic region of A. cepa and caused an increase in chromosomal aberrations such as breaks, bridges, stickiness, as well as micronuclei formation in a concentration-dependent manner. In conclusion, D. auricularia exhibited toxicological responses in A. salina and A. cepa test systems that advocates that adequate precautions should be taken during its traditional usages.

Graphical Abstract

Keywords

Allium cepa Artemia salina Cytotoxicity Mutagenicity Toxicity Health concern 

Notes

Acknowledgement

The authors are grateful to the Department of Pharmacy, Southern University Bangladesh (SUB) and Nuclear of Pharmaceutical Technology (NTF), Federal University of Piauí (UFPI), Brazil, for laboratory facilities to conduct this study.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest to publish this manuscript.

References

  1. 1.
    Latha LS, Reddy PN (2009) Antimicrobial, antidiarrheal and analysis of phytochemical constituents of Sphaeranthus amaranthoides. Indian J Sci Technol 2:45–48Google Scholar
  2. 2.
    Abu-Rabia A (2005) Urinary diseases and ethnobotany among pastoral nomads in the Middle East. J Ethnobiol Ethnomed 1:4CrossRefGoogle Scholar
  3. 3.
    Yakubu MT, Salimon SS (2015) Antidiarrhoeal activity of aqueous extract of Mangifera indica L. leaves in female albino rats. J Ethnopharmacol 163:135–141CrossRefGoogle Scholar
  4. 4.
    Rates SMK (2001) Plants as source of drugs. Toxicon 39:603–613CrossRefGoogle Scholar
  5. 5.
    Ivkovic BM, Nikolic K, Ilic BB, Zizak ZS, Novakovic RB, Cudina OA, Vladimirov SM (2013) Phenylpropiophenone derivatives as potential anticancer agents: synthesis, biological evaluation and quantitative structure activity relationship study. Eur J Med Chem 63:239–255CrossRefGoogle Scholar
  6. 6.
    Nunes GBL, Paola R, Policarpo PR, Costa LM, da Silva TG, Militão GCG, Filho CACGMB, Gutierrez SJC, Islam MT, de Freitas RM (2014) In vitro antioxidant and cytotoxic activity of some synthetic riparin-derived compounds. Molecules 19:4595–4607CrossRefGoogle Scholar
  7. 7.
    Nur T, Islam MT, Alam S, Chowdhury MMU, Melo-Cavalcante AAC, Freitas RM (2015) Pharmacological investigations of organic crude fractions of Dysophylla auricularia. Orient Pharm Exp Med 15:207–215CrossRefGoogle Scholar
  8. 8.
    Islam MT, Sousa LR, Mata AMOF, Alencar MVOB, Lima RMT, Sousa JMC, Melo-Cavalcante AAC (2018) Antioxidant capacity of the methanol extract of Dysophylla auricularia. Curr Bioact Compd 14:92–98CrossRefGoogle Scholar
  9. 9.
    Michael AS, Thompson CG, Abramovitz M (1956) Artemia salina as a test organism for bioassay. Science 123:464–466CrossRefGoogle Scholar
  10. 10.
    Sorgeloos P, Remiche-Van Der Wielen C, Persoone G (1978) The use of Artemia nauplii for toxicity tests—a critical analysis. Ecotoxicol Environ Saf 2:249–255CrossRefGoogle Scholar
  11. 11.
    Meyer BN, Ferringni NR, Puam JE, Lacobsen LB, Nichols DE, McLaughlin JL (1982) Brine shrimp: a convenient general bioassay for active constituents. Planta Med 45:31–34CrossRefGoogle Scholar
  12. 12.
    Diana F, Fernandéz V, Torres E (2000) Evaluacion de la actividad genotóxica de efluentes de curtiembres del Dpto. Central de la region oriental. Paraguay Rev Ciencia Tecnol 2:37–48Google Scholar
  13. 13.
    Islam MT, Mata AMOF, Aguiar RPS, Paz MFCJ, Alencar MVOB, Melo-Cavalcante AAC (2016) Therapeutic potential of essential oils focusing on diterpens. Phytother Res 30:1420–1444CrossRefGoogle Scholar
  14. 14.
    Asante-Duah K (2002) Public health risk assessment for human exposure to chemicals (illustrated), vol 6. Kluwer Academic Publishers, DordrechtGoogle Scholar
  15. 15.
    Gyawali R, Ibrahim SA (2014) Natural products as antimicrobial agents. Food Control 46:412–429CrossRefGoogle Scholar
  16. 16.
    Sans J, Aguilera AM, Faundez P, Troncoso P, Fernandez V, Videla LA (1999) Influence of copper-(II) on colloidal carbon-induced Kupffer cell-dependent oxygen uptake in rat liver: relation to hepatotoxicity. Free Rad Res 30:489–498CrossRefGoogle Scholar
  17. 17.
    Yildiz M, Ciğerci IH, Konuk M, Fidan AF, Terzi H (2009) Determination of genotoxic effects of copper sulphate and cobalt chloride in Allium cepa root cells by chromosome aberration and comet assays. Hemosphere 75:934–938CrossRefGoogle Scholar
  18. 18.
    Clayton GD, Clayton FE (1981) Patty’s industrial hygiene and toxicology, 3rd edn, vol 2, Part 6 Toxicol. Wiley, NYGoogle Scholar
  19. 19.
    Rana NU, Hasan I, Karim N, Sakib MH, Rashid MHO, Dhar R (2015) Phytochemical, cytotoxic and thrombolytic activity of methanolic extract of Dysophylla auricularia leaves. Am J Pharmtech Res 5:466–476Google Scholar
  20. 20.
    Sangian H, Faramarzi H, Yazdinezhad A, Mousavi SJ, Zamani Z, Noubarani M et al (2013) Antiplasmodial activity of ethanolic extracts of some selected medicinal plants from the northwest of Iran. Parasitol Res 112:3697–3701CrossRefGoogle Scholar
  21. 21.
    Mclaughlin JL, Rogers LL, Anderson JE (1998) The use of biological assays to evaluate botanicals. Drug Inf J 32:513–524CrossRefGoogle Scholar
  22. 22.
    Nunes BS, Carvalho FD, Guilhermino LM, Van Stappen G (2006) Use of the genus Artemia in ecotoxicity testing. Environ Pollut 144:453–462CrossRefGoogle Scholar
  23. 23.
    Rajabi S, Ramazani A, Hamidi M, Naji T (2015) Artemia salina as a model organism in toxicity assessment of nanoparticles. J Pharmaceut Sci 23:20Google Scholar
  24. 24.
    Pathiratne A, Hemachandra CK, De Silva N (2015) Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of industrial effluents originated from different industrial activities. Environ Monit Assess 187:730–736CrossRefGoogle Scholar
  25. 25.
    Mesi A, Kopliku D (2013) Cytotoxic and genotoxic potency screening of two pesticides on Allium cepa L. Procedia Technol 8:19–26CrossRefGoogle Scholar
  26. 26.
    Fiskesjö G (1985) The Allium test as a standard in environmental monitoring. Hereditas 102:99–112CrossRefGoogle Scholar
  27. 27.
    Das AB, Mallick R (1993) Nuclear DNA and chromosomal changes within the tribe Ammineae. Cytobios 74:197–207.  https://doi.org/10.1139/g07-083 Google Scholar
  28. 28.
    Singh BN, Singh BR, Singh RL, Prakash D, Singh DP, Sarma BK, Upadhyay G, Singh HB (2009) Polyphenolics from various extracts/fractions of red onion (Allium cepa) peel with potent antioxidant and antimutagenic activities. Food Chem Toxicol 47:1161–1167CrossRefGoogle Scholar
  29. 29.
    Neto MPL, Gomes DCV, Júnior ALG, Paz MFCJ, Alencar MVOB, Islam MT, Ferreira PMP, Melo-Cavalcante AAC (2016) Toxicogenetic evaluation of an imidazolidine derivative PT-31. Curr Pharmaceut Biotechnol 17:1043–1048CrossRefGoogle Scholar
  30. 30.
    Islam MT, Streck L, Paz MFCJ, Sousa JMC, Alencar MVOB, Mata AMOF, Carvalho RM, Santos JVO, Silva-Junior AA, Ferreira PMP, Melo-Cavalcante AAC (2016) Preparation of phytol-loaded nanoemulsion and screening for antioxidant capacity. Int Arch Med 9:1–15Google Scholar
  31. 31.
    Islam MT (2016) Concentration-dependent-activities of diterpenes: achieving anti-/pro-oxidant links. Asian J Ethnopharmacol Med Foods 2:12–15Google Scholar

Copyright information

© The National Academy of Sciences, India 2019

Authors and Affiliations

  1. 1.Department for Management of Science and Technology DevelopmentTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of PharmacyTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Gaco Pharmaceuticals and Research LaboratoryDhakaBangladesh
  4. 4.Faculty of Life SciencesKhulna UniversityKhulnaBangladesh
  5. 5.Amity Institute of Microbial TechnologyAmity UniversityNoidaIndia
  6. 6.Postgraduate Program of Pharmaceutical SciencesFederal University of PiauíTeresinaBrazil
  7. 7.Cancer Biology Laboratory, School of Biological Sciences (Zoology)Dr. Harisingh Gour Central UniversitySagarIndia
  8. 8.School of MedicineFlinders UniversityAdelaideAustralia

Personalised recommendations