Advertisement

Carbon Dynamics in Quercus semecarpifolia (Kharsu Oak) and Quercus floribunda (Moru Oak) Forests of Garhwal Himalaya, India

  • Suchita Dimri
  • Pratibha Baluni
  • C. M. Sharma
Research Article
  • 64 Downloads

Abstract

Oaks are the canopy forming, climax keystone species of moist temperate forest of Garhwal Himalaya whose biomass and carbon cycling data is obscure. Patterns of biomass and carbon pool of Quercus semecarpifolia (Kharsu Oak) and Quercus floribunda (Moru Oak) were quantified in Garhwal Himalaya. The dead organic matter (DOM) contributed 9.13 and 8.66% to the carbon pool in Kharsu Oak and Moru Oak forests respectively. The bole biomass contributed 71% (282.01 Mg/ha) and 59% (280.51 Mg/ha) and stump-root biomass contributed 62% (70.34 Mg/ha) and 60% (68.60 Mg/ha) significantly to the live carbon respectively in above two forests. Oak forests have great potential for enhanced future carbon stocks suggesting the relevance of DOM as a significant contributor to carbon pool in Oaks of Garhwal Himalaya.

Keywords

Dead organic matter Above ground biomass Bole biomass Woody debris Litter carbon Deadwood 

Notes

Acknowledgements

The authors thank University Grant Commission (New Delhi) for providing research fellowship. One of the authors (CMS) is thankful to Department of Science and Technology, Government of India, New Delhi, for providing the financial support vide Project No. SERB/SR/SO/PS/14/2010.

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    IPCC (2001) Climate change 2001: the scientific basis. In: Houghton JT et al (eds) Contribution of group work to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Malhi Y, Meir P, Brown S (2002) Forests carbon and global climate. Philos Trans R Soc Lond 360:1567–1591CrossRefGoogle Scholar
  3. 3.
    Haripriya GS (2003) Carbon budget of the Indian forest ecosystem. Clim Change 56:291–319CrossRefGoogle Scholar
  4. 4.
    Somogyi Z, Cienciala EE, Maakipaa ER, Muukkone P, Lehtonen A, Weiss P (2007) Indirect methods of large-scale forest biomass estimation. Eur J For Res 126:197–207CrossRefGoogle Scholar
  5. 5.
    Santilli M, Mouthino P, Schwartzman S, Nepstad D, Curran L, Nobre C (2005) Tropical deforestation and the Kyoto protocol. Clim Change 71:267–276CrossRefGoogle Scholar
  6. 6.
    Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P et al (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc Lond 363:789–813CrossRefGoogle Scholar
  7. 7.
    Kishwan J, Pande V (2011) India’s forests and REDD+. MoEF, Govt. of India, New DelhiGoogle Scholar
  8. 8.
    Sabine CL, Heimann M, Artaxo P, Bakker D, Chen C, Field C et al (2004) Current status and past trends of the global carbon cycle. In: Field CB, Raupach MR (eds) The global carbon cycle: integrating humans, climate and the natural world. Island Press, Washington, DC, pp 17–44Google Scholar
  9. 9.
    Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) Large and persistent carbon sink in the world’s forests. Science 333:988–993CrossRefPubMedGoogle Scholar
  10. 10.
    Troup RS (1921) Silviculture of Indian trees, vol I–III. Clarendon Press, OxfordGoogle Scholar
  11. 11.
    Ralhan PK, Saxena AK, Singh JS (1982) Analysis of forest veg-etation at and around Nainital in Kumaun Himalaya. Proc Indian Natl Sci Acad 48:122–138Google Scholar
  12. 12.
    Singh JS, Singh SP (1987) Forest vegetation of the Himalaya. Bot Rev 53(1):80–192CrossRefGoogle Scholar
  13. 13.
    Rawat YS, Singh JS (1988) The structure and function of Oak forests in Central Himalaya I. Dry matter dynamics. Ann. Bot. 62:413–427CrossRefGoogle Scholar
  14. 14.
    FSI (2009) State of Forest report 2009. Forest Survey of India, Ministry of Environment and Forests, Government of India, Dehradun, pp 159–162Google Scholar
  15. 15.
    Gairola S (2010) Phtyodiversity, forest composition, growing stock variation and regeneration status in the Mandal-Chopta forest of Garhwal Himalaya. PhD thesis, HNB Garhwal University, UttarakhandGoogle Scholar
  16. 16.
    Adhikari BS, Rawat YS, Singh SP (1995) Structure and function of high altitude forests of central Himalaya I. Dry matter dynamics. Ann Bot 75:237–248CrossRefGoogle Scholar
  17. 17.
    Negi JDS, Manhas RK, Chauhan PS (2003) Carbon allocation in different components of some tree species of India: a new approach for carbon estimation. Curr Sci 85:101–104Google Scholar
  18. 18.
    IPCC (2003) Good practice guidance for land use, land-use change and forestry. Available from the IPCC Secretariat (www.ipcc.ch), or may be downloaded from the National Greenhouse Gas Inventory Programme at http://www.ipcc-nggip.iges.or.jp
  19. 19.
    Harmon ME, Sexton J (1996) Guidelines for measurements of wood detritus in forest ecosystems. USLTER Publication No. 20. US LTER Network Office, University of Washington, SeattleGoogle Scholar
  20. 20.
    IPCC (2006) Guidelines for national greenhouse gas inventory, vol 4, Agriculture, forestry and other land. Available from the IPCC Secretariat (www.ipcc.ch), or downloadable from the National Greenhouse Gas Inventory Programme at http://www.ipcc-nggip.iges.or
  21. 21.
    Gairola S, Sharma CM, Ghildiyal SK, Suyal S (2011) Live-tree biomass and carbon variation along an altitudinal gradient in moist temperate valley slopes of the Garhwal Himalaya (India). Curr Sci 100(12):1862–1870Google Scholar
  22. 22.
    Sharma CM, Baduni NP, Gairola S, Ghildiyal SK, Suyal S (2010) Tree diversity and carbon stocks of some major forest types of Garhwal Himalaya, India. For Ecol Manag 260:2170–2179CrossRefGoogle Scholar
  23. 23.
    Sharma CM, Gairola S, Baduni NP, Ghildiyal SK, Suyal S (2011) Variation in carbon stocks on the different slope aspects in seven major forest types of temperate region of Garhwal Himalayas, India. J Biosci 36(4):701–708CrossRefPubMedGoogle Scholar
  24. 24.
    Singh JS, Tiwari AK, Saxena AK (1985) Himalayan forests: a net source of carbon to the atmosphere. Environ Conserv 12:67–69CrossRefGoogle Scholar
  25. 25.
    Houghton RA (2005) Aboveground forest biomass and the global carbon balance. Glob Change Biol 11:945–958CrossRefGoogle Scholar
  26. 26.
    Mendoza-Ponce A, Galicia L (2010) Aboveground and belowground biomass and carbon pools in highland temperate forest landscape in Central Mexico. Forestry 83(5):497–506. doi: 10.1093/forestry/cpq032 CrossRefGoogle Scholar
  27. 27.
    Carey EV, Sala A, Keane R, Callaway RM (2001) Are old forests underestimated as global carbon sinks? Glob Change Biol 7:339–344CrossRefGoogle Scholar
  28. 28.
    Acosta-Míreles M, Vargas-Hernández A, Velázquez-Martínez Etchevers-Barra J (2002) Estimación de la biomasa aérea mediante el uso de las relaciones alométricas en seis especies arbóreas en Oaxaca, México. Agrociencia 36:725–736Google Scholar
  29. 29.
    Luyssaert S, Schulze ED, Borner A, Knohl A, Hessenmoller D, Law BE, Ciais P, Grace P (2008) Old growth forests as global carbon sink. Nature 455:213–215CrossRefPubMedGoogle Scholar
  30. 30.
    Keith H, Mackey BG, Lindenmayer DB (2009) Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc Natl Acad Sci USA 106:11635–11640CrossRefPubMedGoogle Scholar
  31. 31.
    Chapin FS, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer, New York. ISBN 0-387-95439-2Google Scholar
  32. 32.
    Friedlingstein P, Houghton RA, Marland G, Hackler J, Boden TA, Conway TJ, Canadell JG, Raupach MR, Ciais P, Le Quere C (2010) Update on CO2 emissions. Nat Geosci 3:811–812CrossRefGoogle Scholar
  33. 33.
    Kauppi PE et al (2006) Returning forests analyzed with the forest identity. Proc Natl Acad Sci USA 103:17574–17579CrossRefPubMedGoogle Scholar
  34. 34.
    Ravindranath NH, Ostwald M (2008) Carbon inventory methods. Handbook for greenhouse gas inventory, carbon mitigation and roundwood production projects. Springer, New York. ISBN 9781402065460CrossRefGoogle Scholar
  35. 35.
    Bradford JB et al (2009) Detrital carbon pools in temperate forests. Can J For Res 39:802–813CrossRefGoogle Scholar
  36. 36.
    Hagemann U, Moroni MT, Makeschin F (2009) Deadwood abundance in Labrador high-boreal black spruce forests. Can J For Res 39:131–142CrossRefGoogle Scholar
  37. 37.
    Delaney M, Brown S, Lugo AE, Torres-Lezama A, Bello Quintero N (1997) The distribution of organic carbon in major components of forests located in five life zones of Venezuela. J Trop Ecol 13:697–708CrossRefGoogle Scholar
  38. 38.
    Nunery JS, Keeton WS (2010) Forest carbon storage in the north-eastern United States: net effects of harvesting frequency, post-harvest retention, and wood products. For Ecol Manag 259:1363–1375CrossRefGoogle Scholar
  39. 39.
    Laiho R, Prescott C (2004) Decay and nutrient dynamics of coarse woody debris in northern gymnosperm forests. Can J For Res 34:763–777CrossRefGoogle Scholar
  40. 40.
    Gough CM, Voge CS, Kazanski C, Nagel L, Flower CE, Curtis PS (2007) Coarse woody debris and the carbon balance of a north temperate forest. For Ecol Manag 244:60–67CrossRefGoogle Scholar
  41. 41.
    Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Seddt JR, Lienkaemper GW, Cromaclc K Jr, Cummins KW (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–302CrossRefGoogle Scholar
  42. 42.
    Paletto A, Ferretti F, De Meo I, Cantiani P, Focacci M (2012) Ecological and environmental role of deadwood in managed and unmanaged forests. In: Diez JJ (eds) Sustainable forest management—current research. InTech, pp 219–238. ISBN: 978-953-51-0621-0. http://www.intechopen.com/books/sustainable-forest-management-current-research/ecologicalandenvironmental-role-of-deadwood-in-managed-and-unmanaged-forests
  43. 43.
    Rouvinen S, Rautiainen A, Kouki J (2005) A relation between historical forest use and current dead woody material in a boreal protected old-growth forest in Finland. Silva Fenn 39(1):21–36CrossRefGoogle Scholar
  44. 44.
    Gray JT, Schlesinger WH (1981) Nutrient cycling in Mediterranean type ecosystems. In: Miller PC (ed) Resource use by chaparral and matorral. A comparison of vegetation function in two mediterranean type ecosystems, vol 39., Ecological studiesSpringer, New York, pp 259–286CrossRefGoogle Scholar
  45. 45.
    Baishya R, Barik SK (2011) Estimation of tree biomass, carbon pool and net primary production of an old-growth Pinus kesiya Royle ex. Gordonforest in north-eastern India. Ann For Sci 68:727–736. doi: 10.1007/s13595-011-0089-8 CrossRefGoogle Scholar
  46. 46.
    Janisch JE, Harmon ME (2002) Successional changes in live and dead wood carbon stores: implications for net ecosystem productivity. Tree Physiol 22:77–89CrossRefPubMedGoogle Scholar
  47. 47.
    Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30(1):1–67Google Scholar
  48. 48.
    Hua C (1989) Studies on tree mortality and log decomposition of main species in Korean Pine deciduous mixed forest. Master’s dissertation, Institute of Applied Ecology, Academia Sinica, Shengyang, Peoples’ Republic of ChinaGoogle Scholar
  49. 49.
    Jina BS, Sah P, Bhatt MD, Rawat YS (2008) Estimating carbon sequestration rates and total carbon stockpile in degraded and nondegraded sites of oak and pine forest of Kumaun Central Himalaya. Ecoprint 15:75–81Google Scholar
  50. 50.
    Rana BS, Singh SP, Singh RP (1989) Carbon and energy dynamic of seven Central Himalayan forests. Trop Ecol 30(2):253–264Google Scholar
  51. 51.
    Tolunay D (2011) Total carbon stocks and carbon accumulation in living tree biomass in forest ecosystems of Turkey. Turk J Agric For 35:265–279. doi: 10.3906/tar-0909-369 CrossRefGoogle Scholar
  52. 52.
    Paladinic E, Vuletic D, Martinic I, Marjanovic H, Indir K, Benko M, Novotny V (2009) Forest biomass and sequestered carbon estimation according to main tree components on the forest stand scale. Period Biol 111(4):459–466Google Scholar
  53. 53.
    Chaudhary P, Aryal KP (2009) Global Warming in Nepal: Challenges and Policy Imperatives. J For Livelihood 8(1):4–13Google Scholar
  54. 54.
    Sollins P, Cline SP, Verhoeven T, Sachs D, Spycher G (1987) Patterns of log decaying old-growth Douglas-fir forests. Can J For Res 17:1585–1595CrossRefGoogle Scholar
  55. 55.
    Grier CC, Logan RS (1977) Old growth Pseudo tsugamenziesii communities of a western Oregon watershed: biomass distribution and production budgets. Ecol Monogr 47:373–400CrossRefGoogle Scholar
  56. 56.
    Grigal DF (2007) Ecosystem carbon storage on the Marcell Experimental Forest Minnesota. Report to the US forest service, Northern Research Station, Grand Rapids, MichGoogle Scholar
  57. 57.
    Ordonez J, de Jong B, Garcia-Oliva F, Avina F, Perez J, Guerrero G et al (2008) Carbon content in vegetation, litter, and soil under 10 different land-use and land-cover classes in the Central Highlands of Michoacan, Mexico. For Ecol Manag 255:2074–2084CrossRefGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2017

Authors and Affiliations

  1. 1.Department of BotanyHNB Garhwal UniversitySrinagar GarhwalIndia

Personalised recommendations