Advertisement

Characterization of Plant Growth Promoting Rhizobia from Root Nodule of Two Legume Species Cultivated in Assam, India

  • Biswajit Singha
  • Pranab Behari Mazumder
  • Piyush Pandey
Research Article
  • 109 Downloads

Abstract

In order to characterize the diversity of plant growth promoting rhizobia associated with legumes cultivated in Assam, 32 bacterial isolates were obtained from the root nodules of Cajanus cajan L and Lablab purpureus L. The isolates were investigated for their morphological, biochemical and plant growth promoting features. The isolates showed similar morphological features such as creamy, white colonies, gram negative staining, rod shape cells but showed variation in the results of biochemical tests. In addition, the isolates produced indole-3-acetic acid, ammonia, solubilized inorganic phosphate and showed varied level of tolerance to acidic pH and high salinity. Present study revealed the presence of nitrogen fixation (nifH) gene and nodulation (nodC) gene in the selected isolates. Restriction fragment length polymorphism (RFLP) analysis of 16S rDNA of the isolates and reference strains revealed a high genetic diversity among them. Basic local alignment search tool (BLAST) analysis of 16S rDNA sequences revealed that isolates from Cajanus cajan L were phylogenetically related to Burkholderia, Mesorhizobium, Rhizobium genera and isolates from Lablab purpureus L were phylogenetically related to Bradyrhizobium genus. The present study also revealed the nodulation and plant growth promoting ability of the isolates on their host plants.

Keywords

Cajanus cajan Indole-3-acetic acid Lablab purpureus Nitrogen fixation Nodulation 

Notes

Acknowledgements

The authors are thankful to Department of Biotechnology (DBT), Government of India for financial support under Major Research Project.

References

  1. 1.
    Somasegaran P, Hoben HJ (1994) Handbook for rhizobia. Springer, New YorkCrossRefGoogle Scholar
  2. 2.
    Lodwig EM, Hosie AHF, Bourdes A, Findlay K, Allaway D (2003) Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis. Nature 422:722–726CrossRefPubMedGoogle Scholar
  3. 3.
    Brockwell J, Bottomly PJ, Thies JE (1995) Manipulation of rhizobia microflora for improving legume productivity and soil fertility: a critical assessment. Plant Soil 174:143–150CrossRefGoogle Scholar
  4. 4.
    Deshwal VK, Dubey RC, Maheshwari DK (2003) Isolation of plant growth promoting strains of Bradyrhizobium (Arachis sp.) with biocontrol potential against Macrophomina causing charcoal rot of peanut. Curr Sci 84:443–448Google Scholar
  5. 5.
    Dubey RC, Maheshwari DK, Kumar H, Choure K (2010) Assessment of diversity and plant growth promoting attributes of rhizobia isolated from Cajanus cajan L. Afr J Biotechnol 9:8619–8629Google Scholar
  6. 6.
    Deshwal VK, Pandey P, Kang SC, Maheshwari DK (2003) Rhizobia as a biological control agent against soil borne plant pathogenic fungi. Indian J Exp Biol 41:1160–1164PubMedGoogle Scholar
  7. 7.
    Laguerre G, Allard MR, Revoy F, Amarger N (1994) Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol 60:56–63PubMedPubMedCentralGoogle Scholar
  8. 8.
    Young JP, Downer HL, Eardly BD (1991) Phylogeny of the phototrophic Rhizobium strain BTAi1 by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. J Bacteriol 173:2271–2277CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chen WM, deFaria SM, Straliotto Pitard RM, Simoes JL, Chou YJ (2005) Proof that Burkholderia forms effective symbioses with legumes: a study of novel Mimosa-nodulating strains from South America. Appl Environ Microbiol 71:7461–7471CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Peoples MB, Herridge DF, Ladha JK (1995) Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production. Plant Soil 174:3–28CrossRefGoogle Scholar
  11. 11.
    Rao JVDKK, Thompson JA, Sastry PVSS, Giller KE, Day JM (1987) Measurement of N2-fixation in field-grown pigeonpea [Cajanus cajan (L.) Mill sp.] using 15N-labelled fertilizer. Plant Soil 101:107–113CrossRefGoogle Scholar
  12. 12.
    Vincent JM (1970) A manual for the practical study of the root nodule bacteria. Blackwell Scientific, OxfordGoogle Scholar
  13. 13.
    Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) In: Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins Press, Baltimore, pp 71–101Google Scholar
  14. 14.
    Romdhane S, Nasr H, Samba-Mbaye R, Neyra M, Ghorbel MH (2006) Genetic diversity of Acacia tortilis ssp. raddiana rhizobia in Tunisia assessed by 16S and 16S-23S rDNA genes analysis. J Appl Microbiol 100:436–445CrossRefPubMedGoogle Scholar
  15. 15.
    Kucuk C, Kivanc M, Kinaci E (2006) Characterization of Rhizobium sp. isolated from bean. Turk J Biol 30:127–132Google Scholar
  16. 16.
    Pikovskaya RI (1948) Mobilization of phosphorous in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:362–370Google Scholar
  17. 17.
    Gordon SA, Weber RP (1951) Colorimeteric estimation of indole acetic acid. Plant Physiol 26:192–195CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kumar A, Devi S, Patil S, Payal C, Negi S (2012) Isolation, screening and characterization of bacteria from rhizospheric soils for different plant growth promotion (PGP) activities: an in vitro study. Recent Res Sci Techol 4:01–05Google Scholar
  19. 19.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor, New YorkGoogle Scholar
  20. 20.
    Zehr JP, McReynolds LA (1989) Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol 55:2522–2526PubMedPubMedCentralGoogle Scholar
  21. 21.
    Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Rohlf FJ (1998) NTSYS-PC: numerical taxonomy and multivariate analysis system version 2.02f. Exeter Software. New York, USAGoogle Scholar
  23. 23.
    Hall TA (1999) BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  24. 24.
    Choudhury B, Azad P, Kalita MC (2010) Variability in symbiotic effectiveness of native rhizobia in acid stress. Curr Microbiol 61:85–91 CrossRefGoogle Scholar
  25. 25.
    Flores-Felix JD, Marcos-Garcia M, Silva LR, Menendez E, Martinez-Molina E, Mateos PF, Velazquez E, Garcia-Fraile P, Andrade P, Rivas R (2015) Rhizobium as plant probiotic for strawberry production under microcosm conditions. Symbiosis 67:25–32CrossRefPubMedGoogle Scholar
  26. 26.
    Chang YL, Wang ET, Sui XH, Zhang XX, Chen WX (2011) Molecular diversity and phylogeny of rhizobia associated with Lablab purpureus (Linn.) grown in Southern China. Syst Appl Microbiol 34:276–284CrossRefGoogle Scholar
  27. 27.
    Costa FM, Schiavo JA, Brasil MS, Leite J, Xavier GR, Fernandes PI (2014) Phenotypic and molecular fingerprinting of fast growing rhizobia of field-grown pigeonpea from the eastern edge of the Brazilian Pantanal. Genet Mol Res 13:469–482CrossRefPubMedGoogle Scholar
  28. 28.
    Ramsubhag A, Umaharan P, Donawa A (2002) Partial 16S rRNA gene sequence diversity and numerical taxonomy of slow growing pigeonpea (Cajanus cajan L. Mill sp.) nodulating rhizobia. FEMS Microbiol Lett 216:139–144CrossRefPubMedGoogle Scholar
  29. 29.
    Rincon-Rosales R, Villalobos-Escobedo JM, Rogel MA, Martinez J, Ormeno-Orrillo E, Martinez-Romero E (2013) Rhizobium calliandrae sp. nov., Rhizobium mayense sp. nov. and Rhizobium jaguaris sp. nov., rhizobial species nodulating the medicinal legume Calliandra grandiflora. Int J Syst Evol Microbiol 63:3423–3429CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Miller SCM, LiPuma JJ, Parke JL (2002) Culture-based and non-growth-dependent detection of the Burkholderia cepacia complex in soil environments. Appl Environ Microbiol 68:3750–3758CrossRefGoogle Scholar
  31. 31.
    Lu JK, He XH, Huang LB, Kang LH, Xu DP (2012) Two Burkholderia strains from nodules of Dalbergia odorifera T. Chen in Hainan Island, southern China. New For 43:397–409Google Scholar
  32. 32.
    Trinick MJ (1980) Relationships amongst the fast-growing rhizobia of Lablab purpureus, Leucaena leucocephala, Mimosa spp., Acacia farnesiana and Sesbania grandiflora and their affinities with other rhizobial groups. J Appl Microbiol 49:39–53CrossRefGoogle Scholar
  33. 33.
    Couto C, Silva LR, Valentao P, Velázquez E, Peix A, Andrade PB (2011) Effects induced by the nodulation with Bradyrhizobium japonicum on Glycine max (soybean) metabolism and antioxidant potential. Food Chem 127:1487–1495CrossRefPubMedGoogle Scholar
  34. 34.
    Silva LR, Azevedo J, Pereira MJ, Carro L, Velazquez E, Peix A, Valentao P, Andrade PB (2014) Inoculation of the nonlegume Capsicum annuum (L.) with Rhizobium Strains. 1. Effect on bioactive compounds, antioxidant activity, and fruit ripeness. J Agric Food Chem 62:557–564CrossRefPubMedGoogle Scholar
  35. 35.
    Silva LR, Azevedo J, Pereira MJ, Carro L, Velazquez E, Peix A, Valentao P, Andrade PB (2014) Inoculation of the nonlegume Capsicum annuum (L.) with Rhizobium Strains. 2. Changes in sterols, triterpenes, fatty acids, and volatile compounds. J Agric Food Chem 62:565–573Google Scholar

Copyright information

© The National Academy of Sciences, India 2017

Authors and Affiliations

  • Biswajit Singha
    • 1
  • Pranab Behari Mazumder
    • 1
  • Piyush Pandey
    • 2
  1. 1.Department of BiotechnologyAssam UniversitySilcharIndia
  2. 2.Department of MicrobiologyAssam UniversitySilcharIndia

Personalised recommendations