The Climate Change Conundrum and the Himalayan Forests: The Way Forward into the Future

  • Anusheema Chakraborty
  • Roopam Shukla
  • Kamna Sachdeva
  • P. S. Roy
  • P. K. JoshiEmail author


The earth’s climate has always been changing, but with current rate of change, forests might not be able to adapt to rapid changes in climate variables, along with increased risk of extreme climate events. Climate change has significantly altered structure, composition and distribution patterns of forests across the globe. The Himalayan forests are sensitive to climate change impacts, but the extent and magnitude of potential response is still not well-understood. Climate change, however, cannot be considered as the only driving force responsible for changes in the type, distribution and coverage of vegetation, as other anthropogenic disturbances equally play a crucial role in accelerating the alterations in this region. With the impeding uncertainties involving climate change and increased dependence of communities on forests and forest-based resources, adaptation must be considered along with mitigation in the foreseeable future. The limited understanding of ecosystem dynamics in the Himalayan region poses a grand challenge for many research programmes in ecology and conservation. The scientific literature shows efforts to model species distribution based on current climate conditions and forecast species distribution based on future climate scenarios. These studies indicate the possibility of extinction and migration of many species; nonetheless, they fail to integrate human influence to changing environmental conditions. Addressing potential impacts of climate change is both urgent and difficult. The hypothesis foretelling the future requires much improvement in its forecasting skills in order to accurately predict the eventual fate for sustainable forest management.


Climate change Himalaya Forests Adaptation Sustainable forest management 



AC would like to acknowledge HSBC Climate Scholarship of TERI University for funding her doctoral research. RS, KS and PKJ would like to acknowledge the Ministry of Environment and Forests and Climate Change (MoEFCC), Government of India (GoI) for their support (Project Serial Number: R&D/NNRMS/2/2013-14). PSR would like to acknowledge the National Academy of Science India (NASI). Authors are thankful to the anonymous reviewers for providing valuable comments to enhance the quality of the manuscript.


  1. 1.
    Reich PB (2009) Accelerating a silvicultural metamorphosis? Bioscience 59:807–809CrossRefGoogle Scholar
  2. 2.
    Soja AJ, Tchebakova NM, French NHF et al (2007) Climate-induced boreal forest change: predictions versus current observations. North Eurasia Reg Clim Environ Chang 56:274–296. doi: 10.1016/j.gloplacha.2006.07.028 CrossRefGoogle Scholar
  3. 3.
    Leemans R, Eickhout B (2004) Another reason for concern: regional and global impacts on ecosystems for different levels of climate change. Glob Environ Chang 14:219–228CrossRefGoogle Scholar
  4. 4.
    Colwell RK, Brehm G, Cardelús CL et al (2008) Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322:258–261CrossRefPubMedGoogle Scholar
  5. 5.
    IPCC (2013). In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V and Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the 5th assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New YorkGoogle Scholar
  6. 6.
    Gottfried M, Pauli H, Futschik A et al (2012) Continent-wide response of mountain vegetation to climate change. Nat Clim Change 2:111–115. doi: 10.1038/nclimate1329 CrossRefGoogle Scholar
  7. 7.
    Huntley B (2005) North temperate responses. In: Lovejoy TE, Hannah L (eds) Climate change and biodiversity. Yale University Press, New Haven, pp 109–124Google Scholar
  8. 8.
    Walther G-R, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395CrossRefPubMedGoogle Scholar
  9. 9.
    McDowell NG, Beerling DJ, Breshears DD et al (2011) The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol Evol 26:523–532CrossRefPubMedGoogle Scholar
  10. 10.
    Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Chang 3:52–58CrossRefGoogle Scholar
  11. 11.
    Gómez JM, González-Megías A, Lorite J et al (2015) The silent extinction: climate change and the potential hybridization-mediated extinction of endemic high-mountain plants. Biodivers Conserv 24:1843–1857. doi: 10.1007/s10531-015-0909-5 CrossRefGoogle Scholar
  12. 12.
    Lindner M, Fitzgerald JB, Zimmermann NE et al (2014) Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management? J Environ Manag 146:69–83. doi: 10.1016/j.jenvman.2014.07.030 CrossRefGoogle Scholar
  13. 13.
    Bhagwat SA, Nogué S, Willis KJ (2012) Resilience of an ancient tropical forest landscape to 7500 years of environmental change. Biol Conserv 153:108–117CrossRefGoogle Scholar
  14. 14.
    Arya N, Ram J (2011) Forest disturbance and its impact on species richness and regeneration of Uttarakhand Himalaya. NY Sci J 4:21–27Google Scholar
  15. 15.
    Nandy S, Kushwaha SPS, Dadhwal VK (2011) Forest degradation assessment in the upper catchment of the river Tons using remote sensing and GIS. Ecol Indic 11:509–513. doi: 10.1016/j.ecolind.2010.07.006 CrossRefGoogle Scholar
  16. 16.
    Sharma SK, Bazaz AB (2012) Sustainable management of biodiversity in the context of climate change-issues, challenges and response. Proc Natl Acad Sci India Sect B Biol Sci 82:251–260CrossRefGoogle Scholar
  17. 17.
    Ghazoul J, Burivalova Z, Garcia-Ulloa J, King LA (2015) Conceptualizing Forest Degradation. Trends Ecol Evol 30:622–632. doi: 10.1016/j.tree.2015.08.001 CrossRefPubMedGoogle Scholar
  18. 18.
    Sasaki N, Putz FE (2009) Critical need for new definitions of “forest” and “forest degradation” in global climate change agreements. Conserv Lett 2:226–232. doi: 10.1111/j.1755-263X.2009.00067.x CrossRefGoogle Scholar
  19. 19.
    Thompson ID, Guariguata MR, Okabe K et al (2013) An operational framework for defining and monitoring forest degradation. Ecol Soc 18:20CrossRefGoogle Scholar
  20. 20.
    Hosonuma N, Herold M, Sy VD et al (2012) An assessment of deforestation and forest degradation drivers in developing countries. Environ Res Lett 7:44009. doi: 10.1088/1748-9326/7/4/044009 CrossRefGoogle Scholar
  21. 21.
    Prabhakar R, Somanathan E, Mehta BS (2006) How degraded are Himalayan forests? Curr Sci 91:61–67Google Scholar
  22. 22.
    Pandit MK, Sodhi NS, Koh LP et al (2006) Unreported yet massive deforestation driving loss of endemic biodiversity in Indian Himalaya. Biodivers Conserv 16:153–163. doi: 10.1007/s10531-006-9038-5 CrossRefGoogle Scholar
  23. 23.
    Shrestha KB, Måren IE, Arneberg E et al (2013) Effect of anthropogenic disturbance on plant species diversity in oak forests in Nepal, Central Himalaya. Int J Biodivers Sci Ecosyst Serv Manag 9:21–29. doi: 10.1080/21513732.2012.749303 CrossRefGoogle Scholar
  24. 24.
    Thom D, Seidl R, Steyrer G et al (2013) Slow and fast drivers of the natural disturbance regime in Central European forest ecosystems. For Ecol Manag 307:293–302. doi: 10.1016/j.foreco.2013.07.017 CrossRefGoogle Scholar
  25. 25.
    Uriarte M, Canham CD, Thompson J et al (2009) Natural disturbance and human land use as determinants of tropical forest dynamics: results from a forest simulator. Ecol Monogr 79:423–443. doi: 10.1890/08-0707.1 CrossRefGoogle Scholar
  26. 26.
    Måren IE, Bhattarai KR, Chaudhary RP (2014) Forest ecosystem services and biodiversity in contrasting Himalayan forest management systems. Environ Conserv 41:73–83. doi: 10.1017/S0376892913000258 CrossRefGoogle Scholar
  27. 27.
    Baland JM, Bardhan P, Das S, Mookherjee D (2010) Forests to the people: decentralization and forest degradation in the Indian Himalayas. World Dev 38:1642–1656CrossRefGoogle Scholar
  28. 28.
    Bhutiyani MR, Kale VS, Pawar NJ (2010) Climate change and the precipitation variations in the northwestern Himalaya: 1866–2006. Int J Climatol 30:535–548. doi: 10.1002/joc.1920 CrossRefGoogle Scholar
  29. 29.
    Eriksson M, Jianchu X, Shrestha AB et al (2009) The Changing Himalayas: impact of climate change on water resources and livelihoods in the greater Himalayas. International Centre for Integrated Mountain Development (ICIMOD), KathmanduGoogle Scholar
  30. 30.
    Semwal RL, Nautiyal S, Maikhuri RK et al (2013) Growth and carbon stocks of multipurpose tree species plantations in degraded lands in Central Himalaya, India. For Ecol Manag 310:450–459. doi: 10.1016/j.foreco.2013.08.023 CrossRefGoogle Scholar
  31. 31.
    Rasul G, Karki M, Sah RP (2008) The role of non-timber forest products in poverty reduction in India: prospects and problems. Dev Pract 18:779–788CrossRefGoogle Scholar
  32. 32.
    Negi VS, Maikhuri RK, Rawat LS (2010) Non-timber forest products (NTFPs): a viable option for biodiversity conservation and livelihood enhancement in central Himalaya. Biodivers Conserv 20:545–559. doi: 10.1007/s10531-010-9966-y CrossRefGoogle Scholar
  33. 33.
    Bruggeman D, Meyfroidt P, Lambin EF (2016) Forest cover changes in Bhutan: revisiting the forest transition. Appl Geogr 67:49–66. doi: 10.1016/j.apgeog.2015.11.019 CrossRefGoogle Scholar
  34. 34.
    Munsi M, Areendran G, Joshi PK (2012) Modeling spatio-temporal change patterns of forest cover: a case study from the Himalayan foothills (India). Reg Environ Chang 12:619–632. doi: 10.1007/s10113-011-0272-3 CrossRefGoogle Scholar
  35. 35.
    Mishra NB, Chaudhuri G (2015) Spatio-temporal analysis of trends in seasonal vegetation productivity across Uttarakhand, Indian Himalayas, 2000–2014. Appl Geogr 56:29–41. doi: 10.1016/j.apgeog.2014.10.007 CrossRefGoogle Scholar
  36. 36.
    Sharma S, Roy PS (2007) Forest fragmentation in the Himalaya: a Central Himalayan case study. Int J Sustain Dev World Ecol 14:201–210. doi: 10.1080/13504500709469720 CrossRefGoogle Scholar
  37. 37.
    Roy P, Murthy M, Roy A et al (2013) Forest fragmentation in India. Curr Sci 105:774Google Scholar
  38. 38.
    Reddy CS, Sreelekshmi S, Jha CS, Dadhwal VK (2013) National assessment of forest fragmentation in India: landscape indices as measures of the effects of fragmentation and forest cover change. Ecol Eng 60:453–464. doi: 10.1016/j.ecoleng.2013.09.064 CrossRefGoogle Scholar
  39. 39.
    Dogra K, Kohli R, Sood S (2009) An assessment and impact of three invasive species in the Shivalik hills of Himachal Pradesh, India. Int J Biodivers Conserv 1:004–010Google Scholar
  40. 40.
    Priyanka N, Joshi P (2013) Effects of climate change on invasion potential distribution of Lantana camara. J Earth Sci Clim Chang 4:164. doi: 10.4172/2157-7617.1000164 CrossRefGoogle Scholar
  41. 41.
    Sharma S, Joshi V, Chhetri RK (2014) Forest fire as a potential environmental threat in recent years in Sikkim, Eastern Himalayas, India. Clim Chang Environ Sustain 2:55–61CrossRefGoogle Scholar
  42. 42.
    Kumar S, Bairagi GD, Kumar A (2015) Identifying triggers for forest fire and assessing fire susceptibility of forests in Indian western Himalaya using geospatial techniques. Nat Hazard 78:203–217CrossRefGoogle Scholar
  43. 43.
    Mandal D, Sharda VN (2013) Appraisal of soil erosion risk in the Eastern Himalayan Region of India for soil conservation planning. Land Degrad Dev 24:430–437. doi: 10.1002/ldr.1139 CrossRefGoogle Scholar
  44. 44.
    Ghimire CP, Bonell M, Bruijnzeel LA et al (2013) Reforesting severely degraded grassland in the lesser Himalaya of Nepal: effects on soil hydraulic conductivity and overland flow production. J Geophys Res Earth Surf 118:2528–2545. doi: 10.1002/2013JF002888 CrossRefGoogle Scholar
  45. 45.
    Pandey R, Hom SK, Harrison S, Yadav VK (2014) Mitigation potential of important farm and forest trees: a potentiality for clean development mechanism afforestation reforestation (CDM A R) project and reducing emissions from deforestation and degradation, along with conservation and enhancement of carbon stocks (REDD+). Mitig Adapt Strateg Glob Chang 21:225–232. doi: 10.1007/s11027-014-9591-2 CrossRefGoogle Scholar
  46. 46.
    Saha D, Kukal SS, Bawa SS (2014) Soil organic carbon stock and fractions in relation to land use and soil depth in the degraded shiwaliks hills of lower Himalayas. Land Degrad Dev 25:407–416. doi: 10.1002/ldr.2151 CrossRefGoogle Scholar
  47. 47.
    Dash S, Jenamani R, Kalsi S, Panda S (2007) Some evidence of climate change in twentieth-century India. Clim Chang 85:299–321CrossRefGoogle Scholar
  48. 48.
    Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42CrossRefPubMedGoogle Scholar
  49. 49.
    Briner S, Elkin C, Huber R (2013) Evaluating the relative impact of climate and economic changes on forest and agricultural ecosystem services in mountain regions. J Environ Manag 129:414–422CrossRefGoogle Scholar
  50. 50.
    Banerji G, Basu S (2010) Adapting to climate change in Himalayan cold deserts. Int J Clim Chang Strateg Manag 2:426–448CrossRefGoogle Scholar
  51. 51.
    Miehe G, Miehe S, Schlutz F (2009) Early human impact in the forest ecotone of southern High Asia (Hindu Kush, Himalaya). Quat Res 71:255–265CrossRefGoogle Scholar
  52. 52.
    Chaturvedi RK, Gopalakrishnan R, Jayaraman M et al (2011) Impact of climate change on Indian forests: a dynamic vegetation modeling approach. Mitig Adapt Strateg Glob Chang 16:119–142CrossRefGoogle Scholar
  53. 53.
    Gopalakrishnan R, Jayaraman M, Bala G, Ravindranath NH (2011) Climate change and Indian forests. Curr Sci 101:348–355Google Scholar
  54. 54.
    Joshi PK, Rawat A, Narula S, Sinha V (2012) Assessing impact of climate change on forest cover type shifts in Western Himalayan Eco-region. J For Res 23:75–80CrossRefGoogle Scholar
  55. 55.
    Kumar P (2012) Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling: limitations and challenges. Biodivers Conserv 21:1251–1266CrossRefGoogle Scholar
  56. 56.
    Shrestha UB, Gautam S, Bawa KS (2012) Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS One 7:e36741CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Chakraborty A, Joshi PK, Ghosh A, Areendran G (2013) Assessing biome boundary shifts under climate change scenarios in India. Ecol Indic 34:536–547CrossRefGoogle Scholar
  58. 58.
    Singh PC, Panigrahy S, Parihar JS, Dharaiya N (2013) Modeling environmental niche of Himalayan birch and remote sensing based vicarious validation. Trop Ecol 54:321–329Google Scholar
  59. 59.
    Telwala Y, Brook BW, Manish K, Pandit MK (2013) Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS ONE 8:e57103CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Chitale VS, Behera MD, Roy PS (2014) Future of endemic flora of biodiversity hotspots in India. PLoS One 9:e115264. doi: 10.1371/journal.pone.0115264 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Alekhya VP, Pujar G, Jha C, Dadhwal V (2015) Simulation of vegetation dynamics in Himalaya using dynamic global vegetation model. Trop Ecol 56:219–231Google Scholar
  62. 62.
    Manish K, Telwala Y, Nautiyal DC, Pandit MK (2016) Modelling the impacts of future climate change on plant communities in the Himalaya: a case study from Eastern Himalaya, India. Model Earth Syst Environ 2:1–12. doi: 10.1007/s40808-016-0163-1 CrossRefGoogle Scholar
  63. 63.
    Adhikari D, Barik SK, Upadhaya K (2012) Habitat distribution modelling for reintroduction of Ilex khasiana Purk., a critically endangered tree species of northeastern India. Ecol Eng 40:37–43. doi: 10.1016/j.ecoleng.2011.12.004 CrossRefGoogle Scholar
  64. 64.
    Yang X-Q, Kushwaha SPS, Saran S et al (2013) Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol Eng 51:83–87. doi: 10.1016/j.ecoleng.2012.12.004 CrossRefGoogle Scholar
  65. 65.
    Negi GCS, Samal PK, Kuniyal JC et al (2012) Impact of climate change on the western Himalayan mountain ecosystems: an overview. Trop Ecol 53:345–356Google Scholar
  66. 66.
    Dubey B, Yadav RR, Singh J, Chaturvedi R (2003) Upward shift of Himalayan pine in western Himalaya, India. Curr Sci 85:1135–1136Google Scholar
  67. 67.
    Saran S, Joshi R, Sharma S et al (2010) Geospatial modeling of brown oak (Quercus semecarpifolia) habitats in the kumaun Himalaya under climate change scenario. J Indian Soc Remote Sens 38:535–547CrossRefGoogle Scholar
  68. 68.
    Zhang Y, Gao J, Liu L et al (2013) NDVI-based vegetation changes and their responses to climate change from 1982 to 2011: a case study in the Koshi River Basin in the middle Himalayas. Glob Planet Chang 108:139–148CrossRefGoogle Scholar
  69. 69.
    Wiens JA, Stralberg D, Jongsomjit D et al (2009) Niches, models, and climate change: assessing the assumptions and uncertainties. Proc Natl Acad Sci 106:19729–19736CrossRefPubMedGoogle Scholar
  70. 70.
    Dormann CF (2007) Promising the future? Global change projections of species distributions. Basic Appl Ecol 8:387–397CrossRefGoogle Scholar
  71. 71.
    Bilton MC, Metz J, Tielbörger K (2016) Climatic niche groups: a novel application of a common assumption predicting plant community response to climate change. Perspect Plant Ecol Evol Syst 19:61–69. doi: 10.1016/j.ppees.2016.02.006 CrossRefGoogle Scholar
  72. 72.
    Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350CrossRefPubMedGoogle Scholar
  73. 73.
    Rosenzweig C, Elliott J, Deryng D et al (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci 111:3268–3273. doi: 10.1073/pnas.1222463110 CrossRefPubMedGoogle Scholar
  74. 74.
    Thuiller W, Albert C, Araújo MB et al (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol Evol Syst 9:137–152CrossRefGoogle Scholar
  75. 75.
    Dhar U (2002) Conservation implications of plant endemism in high-altitude Himalaya. Curr Sci 82:141–148Google Scholar
  76. 76.
    Neupane RP, White JD, Alexander SE (2015) Projected hydrologic changes in monsoon-dominated Himalaya mountain basins with changing climate and deforestation. J Hydrol 525:216–230. doi: 10.1016/j.jhydrol.2015.03.048 CrossRefGoogle Scholar
  77. 77.
    Singh P, Kumar N (1997) Effect of orography on precipitation in the western Himalayan region. J Hydrol 199:183–206CrossRefGoogle Scholar
  78. 78.
    Gairola S, Procheş Ş, Rocchini D (2013) High-resolution satellite remote sensing: a new frontier for biodiversity exploration in Indian Himalayan forests. Int J Remote Sens 34:2006–2022. doi: 10.1080/01431161.2012.730161 CrossRefGoogle Scholar
  79. 79.
    Pandit MK, Manish K, Koh LP (2014) Dancing on the roof of the World: ecological Transformation of the Himalayan Landscape. Bioscience 64:980–992CrossRefGoogle Scholar
  80. 80.
    Tol RS (2005) Adaptation and mitigation: trade-offs in substance and methods. Environ Sci Policy 8:572–578CrossRefGoogle Scholar
  81. 81.
    Smit B, Wandel J (2006) Adaptation, adaptive capacity and vulnerability. Glob Environ Chang 16:282–292CrossRefGoogle Scholar
  82. 82.
    Yousefpour R, Hanewinkel M (2015) Forestry professionals’ perceptions of climate change, impacts and adaptation strategies for forests in south-west Germany. Clim Chang 1–14:273–286. doi: 10.1007/s10584-015-1330-5 CrossRefGoogle Scholar
  83. 83.
    Mishra M, Upadhyay DK, Mishra SK (2012) Establishing climate information service system for climate change adaptation in Himalayan region. Curr Sci 103:1417–1422Google Scholar
  84. 84.
    Agrawal A, Chhatre A (2007) State Involvement and Forest Co-Governance: evidence from the Indian Himalayas. Stud Comp Int Dev 42:67–86. doi: 10.1007/s12116-007-9004-6 CrossRefGoogle Scholar
  85. 85.
    Baral HS, Baral HS, Sahgal B et al (2014) Species and habitat conservation through small locally recognised and community managed Special Conservation Sites. J Threat Taxa 6:5677–5685. doi: 10.11609/JoTT.o3792.5677-85 CrossRefGoogle Scholar
  86. 86.
    Meenawat H, Sovacool BK (2011) Improving adaptive capacity and resilience in Bhutan. Mitig Adapt Strateg Glob Chang 16:515–533CrossRefGoogle Scholar
  87. 87.
    Dale VH, Joyce LA, McNulty S et al (2001) Climate change and forest disturbances: climate change can affect forests by altering the frequency, intensity, duration, and timing of fire, drought, introduced species, insect and pathogen outbreaks, hurricanes, windstorms, ice storms, or landslides. Bioscience 51:723–734CrossRefGoogle Scholar
  88. 88.
    Keenan RJ (2015) Climate change impacts and adaptation in forest management: a review. Ann For Sci 1–23:145–167. doi: 10.1007/s13595-014-0446-5 CrossRefGoogle Scholar
  89. 89.
    Kant P, Wu S (2012) Should adaptation to climate change be given priority over mitigation in tropical forests? Carbon Manag 3:303–311. doi: 10.4155/cmt.12.29 CrossRefGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2016

Authors and Affiliations

  • Anusheema Chakraborty
    • 1
  • Roopam Shukla
    • 1
  • Kamna Sachdeva
    • 1
  • P. S. Roy
    • 2
  • P. K. Joshi
    • 3
    Email author
  1. 1.Department of Natural ResourcesTERI UniversityNew DelhiIndia
  2. 2.University Center for Earth and Space ScienceUniversity of HyderabadHyderabadIndia
  3. 3.School of Environmental SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations