Advertisement

Exact Similarity Solution for the Propagation of Spherical Shock Wave in a van der Waals Gas with Azimuthal Magnetic Field, Radiation Heat Flux, Radiation Pressure and Radiation Energy Under Gravitational Field

  • G. NathEmail author
  • Mrityunjoy Dutta
  • R. P. Pathak
Research Article
  • 7 Downloads

Abstract

We investigated the exact similarity solutions for shock wave propagation in non-ideal gas with radiation heat flux under gravitational field by taking radiation pressure and radiation energy into account in the presence of azimuthal magnetic field for spherical geometry. The solutions are in terms of analytical expressions. Similarity method is used to transform the basic equation from a system of partial differential equation into a system of ordinary differential equations. The system of ODE yields exact solutions for initial magnetic field distributions as power law. Consideration of isothermal approximations, radiation pressure, radiation energy and adiabatic compressibility in gravitating medium into accounts leads to new insights into explosion problem in contrast to earlier model. Finally, the product solution of progressive wave given by Mc. Vittie is used to obtain the exact similarity solution under the consideration that the radiation pressure is not equal to zero and the energy loss due to radiation escape is significant. The Alfven–Mach number effect, the parameter of gravitational effect, the parameter of non-idealness of the gas, the radiation pressure number and the adiabatic exponent gamma of the gas are discussed in detail.

Keywords

Shock waves Exact self-similar solution Medium under gravitational field Radiation heat flux Azimuthal magnetic field van der Waals gas Radiation pressure 

Notes

References

  1. 1.
    Sedov LI (1946) Propagation of strong shock waves. J Appl Math Mech 10:241–250Google Scholar
  2. 2.
    Taylor G (1950) The formation of a blast wave by a very intense explosion. I. Theoretical discussion. Proc R Soc Lond Ser A 201:159–174CrossRefzbMATHGoogle Scholar
  3. 3.
    Noh WF (1987) Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux. J Comput Phys 72:78–120CrossRefzbMATHGoogle Scholar
  4. 4.
    Meyer HWJ (1988) Derivation of a Godunov one dimensional fluid dynamics code, technical report, Army Ballistic Research Lab Aberdeen Proving Ground MDGoogle Scholar
  5. 5.
    Gehmeyr M, Cheng B, Mihalas D (1997) Noh’s constant-velocity shock problem revisited. Shock Waves 7:255–274CrossRefzbMATHGoogle Scholar
  6. 6.
    Allen GE, Chow K, DeLaney T, Filipovic MD, Houck JC, Pannuti TG, Stage MD (2015) On the expansion rate, age, and distance of the supernova remnant G266.2-1.2 (Vela Jr.). Astrophys J 798:82CrossRefGoogle Scholar
  7. 7.
    Leahy DA, Ranasinghe S (2016) Distance and evolutionary state of the supernova remnant 3C 397 (G41.1-0.3). Astrophys J 817:74CrossRefGoogle Scholar
  8. 8.
    Lerche I, Vasyliunas VM (1976) Mathematical theory of isothermal blast waves and the question of their applicability to supernova remnants. Astrophys J 210:85–99CrossRefGoogle Scholar
  9. 9.
    Solinger A, Buff J, Rappaport S (1975) Isothermal blast wave model of supernova remnants. Astrophys J 201:381–386CrossRefGoogle Scholar
  10. 10.
    Vink J (2012) Supernova remnants: The X-ray perspective. Astron Astrophys Rev 20:49.  https://doi.org/10.1007/s00159-011-0049-1 CrossRefGoogle Scholar
  11. 11.
    Woltjer L (1972) Supernova remnants. Ann Rev Astron Astrophys 10:129–158CrossRefGoogle Scholar
  12. 12.
    Sedov LI (1959) Similarity and dimensional methods in mechanics. Academic Press, New YorkzbMATHGoogle Scholar
  13. 13.
    Korobeinikov VP (1956) The problem of a strong point explosion in a gas with zero temperaturegradient. Dokl Akad Nauk 109:271–273Google Scholar
  14. 14.
    Korobeinikov VP (1976) Problems in the Theory of Point Explosion in Gases. American Mathematical Society, ProvidenceGoogle Scholar
  15. 15.
    Zel’dovich Ya B, Raizer YuP (1967) Physics of shock waves and high temperature hydrodynamic phenomena, vol II. Academic Press, New YorkGoogle Scholar
  16. 16.
    Lerche I (1977) Isothermal self-similar blast wave theory of supernova remnants driven by relativistic gas pressure. Astrophys Space Sci 50:323–342CrossRefzbMATHGoogle Scholar
  17. 17.
    Stephan C, Deschner Y, Tobias F, Illenseer Y, Wolfgang J, Duschl Z (2018) Self-similarity solutions to isothermal shock problems, SIAM. J Appl Maths 78:80–103zbMATHGoogle Scholar
  18. 18.
    Sponholz H, Molteni D (1994) Steady-state shocks in an accretion disc around a Kerr black hole. MNRAS 271:233–242CrossRefGoogle Scholar
  19. 19.
    Kato S, Inagaki S, Mineshige S, Fukue J (1996) Physics of accretion disks. Gordon and Breach, AmsterdamGoogle Scholar
  20. 20.
    Kato S, Fukue J, Mineshige S (1998) Black-hole accretion disks. Kyoto Univ. Press, KyotoGoogle Scholar
  21. 21.
    Abramowicz MA, Chakrabarti SK (1990) Standing shocks in adiabatic black hole accretion of rotating matter. ApJ 350:281–287CrossRefGoogle Scholar
  22. 22.
    Yang R, Kafatos M (1995) Shock study in fully relativistic isothermal flows, 2. A&A 295:238–244Google Scholar
  23. 23.
    Lu JF, Yuan F (1997) Isothermal Shocks in adiabatic black-hole accretion flows. PASJ: Publ Astron Soc Jpn 49:525–533CrossRefGoogle Scholar
  24. 24.
    Lu JF, Yuan F (1998) Global solution of adiabatic accretion flows with isothermal shocks in Kerr black hole geometry. Mon Not R Astron Soc 295:66–74CrossRefGoogle Scholar
  25. 25.
    Fukumura K, Tsuruta S (2004) Isothermal shock formation in nonequatorial accretion flows around Kerr black holes. APJ 611:964–976CrossRefGoogle Scholar
  26. 26.
    Carrus P, Fox P, Hass F, Kopal Z (1951) The propagation of shock waves in a stellar model with continuous density distribution. Astrophys J 113:496–518MathSciNetCrossRefGoogle Scholar
  27. 27.
    Rogers MH (1957) Analytic solutions for blast wave problem with an atmosphere of varying density. Astrophys J 125:478–493MathSciNetCrossRefGoogle Scholar
  28. 28.
    Summers D (1975) An idealized model of a magnetohydrodynamic spherical blast wave applied to a flare produced shock in the solar wind. Astron. Astophys. 45:151–158Google Scholar
  29. 29.
    Lee TS, Chen T (1968) Hydrodynamic interplanetary shock waves. Planet Space Sci 16:1483–1502CrossRefGoogle Scholar
  30. 30.
    Wang KC (1964) The piston problem with thermal radiation. J Fluid Mech 20:447–455MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Vishwakarma JP, Shrivastava RC, Kumar A (1987) An exact similarity solution in radiation magneto gas dynamics for the flows behind a spherical shock. Astrophys Space Sci 129:45–52CrossRefzbMATHGoogle Scholar
  32. 32.
    Marshak RE (1958) Effects of radiation on shock wave behavior. Phys Fluids 1:24–29MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Elliot LA (1960) Similarity methods in radiation hydrodynamics. Proc R Soc 258A:287–301MathSciNetGoogle Scholar
  34. 34.
    Sachdev PL, Ashraf S (1970) Exact similarity solution in radiation-gas-dynamics. Proc Indian Acad Sci A71:275–281Google Scholar
  35. 35.
    Verma BG, Vishwakarma JP (1978) An exact similarity solution for spherical shock wave in magnetoradiative gas. Astrophys Space Sci 58:139–147CrossRefGoogle Scholar
  36. 36.
    Rosenau P (1977) Equatorial propagation of axisymmetric magnetohydrodynamic shocks II. Phys Fluids 20:1097–1103CrossRefGoogle Scholar
  37. 37.
    Shaviv NJ (2000) The porous atmosphere of η Carinae. Astrophys J 532:L137–L140CrossRefGoogle Scholar
  38. 38.
    Pegoraro F, Bulanov SV (2007) Photon Bubbles and ion acceleration in a plasma dominated by the radiation pressure of an electromagnetic pulse. Phys Rev Lett 99:065002CrossRefGoogle Scholar
  39. 39.
    Arons J (1992) Photon bubbles: overstability in a magnetized atmosphere. Astrophys J 388:561CrossRefGoogle Scholar
  40. 40.
    Esirkepov T, Borghesi M, Bulanov SV, Mourou G, Tajima T (2004) Highly efficient relativistic-ion generation in the laser-piston regime. Phys Rev Lett 92:175003CrossRefGoogle Scholar
  41. 41.
    Macchi A, Cattani F, Liseykina TV, Cornolti F (2005) Laser acceleration of ion bunches at the front surface of over-dense plasmas. Phys Rev Lett 94:165003CrossRefGoogle Scholar
  42. 42.
    Goldreich P (1978) On the radiative acceleration of quasar absorption line clouds. Phys Scr 17:225CrossRefGoogle Scholar
  43. 43.
    Landau LD, Lifshitz EM (1975) The classical theory of fields. Pergamon Press, New YorkzbMATHGoogle Scholar
  44. 44.
    Borghesi M, Fuchs J, Bulanov SV, MacKinnon AJ, Patel PK, Roth M (2006) Fast ion generation by high-intensity laser irradiation of solid targets and applications. Fus Sci Technol 49:412–439CrossRefGoogle Scholar
  45. 45.
    Moon SJ, Wilks SC, Klein RI, RemingtonB A, Ryutov DD, Mackinnon AJ, Patel PK, Spitkovsky A (2005) A neutron star atmosphere in the laboratory with petawatt lasers. Astrophys Space Sci 298:293–298CrossRefzbMATHGoogle Scholar
  46. 46.
    Mourou GA, Tajima T, Bulanov SV (2006) Optics in the relativistic regime. Rev Mod Phys 78:309–371CrossRefGoogle Scholar
  47. 47.
    Kifonidis K, Plewa T, Janka HTh, Müller E (2003) Non-spherical core collapse supernovae I. Neutrino-driven convection, Rayleigh-Taylor instabilities, and the formation and propagation of metal clumps. Astron Astrophys 408:621–649CrossRefGoogle Scholar
  48. 48.
    Robinson APL, Zepf M, Kar S, Evans RG, Bellei C (2008) Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J Phys 10:013021CrossRefGoogle Scholar
  49. 49.
    Tamburini M, Pegoraro F, Piazza A, Di Keitel CH, Macchi A (2010) Radiation reaction effects on radiation pressure acceleration. New J Phys 12:123005CrossRefGoogle Scholar
  50. 50.
    Badziak J, Glowacz S, Jablonski S, Parys P, Wolowski J, Hora H, Krása J, Láska L, Rohlena K (2004) Production of ultrahigh ion current densities at skin-layer subrelativistic laser-plasma interaction. Plasma Phys Control Fus 46(B):541–556CrossRefGoogle Scholar
  51. 51.
    Kar S et al (2008) Plasma jets driven by ultraintense-laser interaction with thin foils Phys. Rev Lett 100:225004CrossRefGoogle Scholar
  52. 52.
    Akli KU et al (2008) Laser heating of solid matter by light-pressure-driven shocks at ultrarelativistic intensities Phys. Rev Lett 100:165002CrossRefGoogle Scholar
  53. 53.
    Macchi A, Veghini S, Tatyana V (2010) Liseykina and francesco pegoraro, radiation pressure acceleration of ultrathin foils. New J Phys 12:045013CrossRefGoogle Scholar
  54. 54.
    Krumholz MR, Christopher DM (2009) The dynamics of radiation pressure dominated H-II regions. Astrophys J 703:1352–1362CrossRefGoogle Scholar
  55. 55.
    Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24:156–159CrossRefGoogle Scholar
  56. 56.
    Letokhov VS (1977) Laser control of atomic motion: velocity selection, cooling and trapping. Comments At Mol Phys 6:119–131Google Scholar
  57. 57.
    Wineland DJ, Drullinger HE, Walls FL (1978) Radiation pressure cooling of bound resonant absorbers Phys. Rev Lett 40:1639–1642CrossRefGoogle Scholar
  58. 58.
    Ashkin A (1980) Applications of laser radiation pressure. Science 210:1081–1088CrossRefGoogle Scholar
  59. 59.
    Vishwakarma JP, Nath G (2010) Propagation of a cylindrical shock wave in a rotating dusty gas with heat conduction and radiation heat flux. Phys Scr 81:045401CrossRefzbMATHGoogle Scholar
  60. 60.
    Vishwakarma JP, Nath G (2012) Spherical shock wave generated by a moving piston in mixture of a non-ideal gas and small solid particles under a gravitational field. Commun Nonlinear Sci Numer Simul 17:2382–2393MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Anisimov SI, Spiner OM (1972) Motion of an almost ideal gas in the presence of a strong point explosion. J Appl Maths Mech 36:883–887CrossRefGoogle Scholar
  62. 62.
    Ranga Rao MP, Purohit NK (1976) Self-similar problem in non-ideal gas. Int J Eng Sci 14:91–97CrossRefzbMATHGoogle Scholar
  63. 63.
    Wu CC, Roberts PH (1993) Shock wave propagation in a sonoluminescing gas bubble. Phys Rev Lett 70:3424–3427CrossRefGoogle Scholar
  64. 64.
    Roberts PH, Wu CC (1996) Structure and stability of a spherical implosion. Phys Lett A 213:59–64CrossRefGoogle Scholar
  65. 65.
    Nath G (2015) Similarity solutions for unsteady flow behind an exponential shock in an axisymmetric rotating non-ideal gas. Meccanica 50:1701–1715MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Vishwakarma JP, Nath G (2007) Similarity solutions for the flow behind an exponential shock in a non-ideal gas. Meccanica 42:331–339MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Vishwakarma JP, Nath G (2009) A self-similar solution of a shock propagation in a mixture of a non-ideal gas and small solid particles. Meccanica 44:239–254CrossRefzbMATHGoogle Scholar
  68. 68.
    Nath G, Dutta M, Pathak RP (2017) An exact solution for the propagation of shock waves in selfgravitating medium in the presence of magnetic field and radiative heat flux. Model Measur Control B 86(4):907–927.  https://doi.org/10.18280/mmc_b.860406 CrossRefGoogle Scholar
  69. 69.
    Rosenau P, Frankenthal S (1976) Shock disturbances in a thermally conducting solar wind. Astrophys J 208:633–637CrossRefGoogle Scholar
  70. 70.
    Rosenau P, Frankenthal S (1978) Propagation of magnetohydrodynamic shocks in a thermally conducting medium. Phys Fluids 21:559–566CrossRefGoogle Scholar
  71. 71.
    Helliwell JB (1969) Self-similar piston problems with radiative heat transfer. J Fluid Mech 37:497–512CrossRefzbMATHGoogle Scholar
  72. 72.
    Vishwakarma JP, Pandey VK (2013) Magnetogasdynamic spherical shock waves in a non- ideal gas with radiation. Int J Appl Math Mech 9:91–102Google Scholar
  73. 73.
    Bhowmick JB (1981) An exact analytical solution in radiation gasdynamics. Astrophys Space Sci 74:481–485MathSciNetCrossRefzbMATHGoogle Scholar
  74. 74.
    Mc Vittie G C (1953) Spherically symmetric solutions of the equations of gas dynamics. Proc Roy Soc 220:339–455MathSciNetCrossRefGoogle Scholar
  75. 75.
    Nath G, Vishwakarma JP, Shrivastava VK, Sinha AK (2013) Propagation of magnetogasdynamic shock waves in a self-gravitating gas with exponentially varying density. J Theor Appl Phys 7:1–8CrossRefGoogle Scholar
  76. 76.
    Whitham GB (1958) On the propagation of shock waves through regions of non-uniform area or flow. J Fluid Mech 4:337–360MathSciNetCrossRefzbMATHGoogle Scholar
  77. 77.
    Landau LD, Lifshitz EM (1958) Course of theoretical physics, statistical physics, vol 5. Pergamon Press, OxfordGoogle Scholar
  78. 78.
    Chandrasekhar S (1939) An introduction to the study of stellar structure. University Chicago Press, ChicagozbMATHGoogle Scholar
  79. 79.
    Pai SI (1969) Inviscid flow of radiation gasdynamics (High temperature inviscid flow of ideal radiating gas, analyzing effects of radiation pressure and energy on flow field). J Math Phys Sci 3:361–370zbMATHGoogle Scholar
  80. 80.
    Vishwakarma JP, Patel N (2015) Magnetogasdynamic cylindrical shock waves in a rotating non-ideal gas with radiation heat flux. J Eng Phys Thermophys 88:521–530CrossRefGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2019

Authors and Affiliations

  1. 1.Department of MathematicsMotilal Nehru National Institute of Technology AllahabadAllahabadIndia
  2. 2.Department of MathematicsNational Institute of Technology, RaipurRaipurIndia

Personalised recommendations