Advertisement

Homotopy Perturbation Method of Delay Differential Equation Using He’s Polynomial with Laplace Transform

  • Hradyesh Kumar MishraEmail author
  • Rajnee Tripathi
Research Article
  • 26 Downloads

Abstract

In this article, we report a combined concept of linearties and nonlinearties of homotopy perturbation method using Laplace transform with He’s polynomials for solving complex delay differential equations which have a versatile application in signal processing, digital image processing, physics and applied sciences. Some examples are given to illustrate the ability and reliability of the proposed method, and the results are compared with VIM and exact solution after taking sum of first four iterations of approximate solution. Convergence analysis is discussed after implementing Banach fixed point theorem.

Keywords

Delay differential equations Homotopy perturbation method He’s polynomials Laplace transform Initial value problem Convergence analysis 

Mathematics Subject Classification

3397 10970 

Notes

Acknowledgements

The first author acknowledges the financial support provided by the Madhya Pradesh Council of Science and Technology (MPCST),under research Grant No. 1013/CST/R&D/Phy&EnggSc/2015; Bhopal, Madhya Pradesh, India. The authors also extended their appreciations to anonymous reviewers for their valuable suggestions to revise this paper.

References

  1. 1.
    He JH (1999) Homotopy perturbation technique. Comput Methods Appl Mech Eng 178:257–262ADSMathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    He JH (2000) A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Int J Non-Linear Mech 35(1):37–43MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    He JH (2003) Homotopy perturbation method: a new non-linear analytical technique. Appl Math Comput 35(1):73–79zbMATHGoogle Scholar
  4. 4.
    He JH (2004) Comparison of homotopy perturbation method and homotopy analysis method. Appl Math Comput 156(2):527–539MathSciNetzbMATHGoogle Scholar
  5. 5.
    He JH (2004) The homotopy perturbation method for non-linear oscillators with discontinuities. Appl Math Comput 151(1):287–292MathSciNetzbMATHGoogle Scholar
  6. 6.
    He JH (2005) Application of homotopy perturbation method to non-linear wave equations. Chaos Solitons Fractals 26(3):695–700ADSMathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Ghorbani A, Saberi Nadjafi J (2007) He’s homotopy perturbation method for calculating adomian polynomials. Int J Nonlinear Sci Numer Simul 8:229–232zbMATHCrossRefGoogle Scholar
  8. 8.
    Ghorbani A (2009) Beyond adomian polynomials: He’s polynomials. Chaos Solitons Fractals 39:1486–1492ADSMathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Syed Tauseef Mohyud Din, Ahmet Yildirim (2010) Variational iteration method for delay differential equations using He’s polynomials. Naturforsch 65:1045–1048CrossRefGoogle Scholar
  10. 10.
    Sara Barati, Karim Ivaz (2012) Variational iteration method for solving systems of linear delay differential equations. Int Sch Sci Res Innov 6:964–967Google Scholar
  11. 11.
    Adomian G (1994) Solving frontier problems of physics: the decomposition method. Kluwer Academic Publishers, Dordrecht, pp 1–337zbMATHGoogle Scholar
  12. 12.
    Shfoiof SM, Baizar J (2007) A sample algorithm for calculating Adomain polynomials. Int J Contemp Math Sci 2(20):975–982MathSciNetGoogle Scholar
  13. 13.
    Wazwaz AM (2000) A new algorithm for calculating Adomain polynomials. J Appl Math Comput 111(1):33–52MathSciNetCrossRefGoogle Scholar
  14. 14.
    Cveticanin L (2006) Homotopy perturbation method for pure non-linear differential equation. Chaos Solitons Fractals 30(5):1221–1230ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    El-Shahed M (2005) Application of He’s homotopy perturbation method to Volterra’s integro-differential equation. Int J Nonlinear Sci Numer Simul 6(2):163–168MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Abbasbandy S (2006) Application of He’s homotopy perturbation method for Laplace transform. Chaos Solitons Fractals 30(5):1206–1212ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    Siddiqui AM, Mahmood R, Ghori QK (2006) Thin film flow of a third grade fluid on a moving belt by He’s homotopy perturbation method. Int J Nonlinear Sci Numer Simul 7(1):7–14MathSciNetGoogle Scholar
  18. 18.
    Siddiqui AM, Mahmood R, Ghori QK (2006) Couette and Poiseuille flows for non-Newtonian fluids. Int J Nonlinear Sci Numer Simul 7(1):15–26MathSciNetzbMATHGoogle Scholar
  19. 19.
    Cai XC, Wu WY, Li MS (2006) Approximate period solution for a kind of non-linear oscillator by He’s perturbation method. Int J Nonlinear Sci Numer Simul 7(1):109–112MathSciNetCrossRefGoogle Scholar
  20. 20.
    Tripathi R, Mishra HK (2016) Homotopy perturbation method with Laplace transform (LT-HPM) for solving Lane–Emden type differential equations (LETDEs). Springer Plus 5(1859):1–21Google Scholar
  21. 21.
    Murray Spiegel R (1988) Teoríay Problemas de Transformadas de Laplace Primeraedición. Serie de compendious Schaum. McGraw-Hill, Mexico City, pp 1–261Google Scholar
  22. 22.
    He JH (2005) Periodic solutions and bifurcations of delay-differential equations. Phys Lett 347(4–6):228–230MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Oberle HJ, Pesch H (1981) Numerical treatment of delay differential equations by Hermite interpolation. Numer Math 37:235–255MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Ogunfiditimi FO (2015) Numerical solution of delay differential equations using the Adomian decomposition method. Int J Eng Sci 4(5):8–23Google Scholar
  25. 25.
    Raslan KR, Evans D (2004) The decomposition method for solving delay differential equations. Int J Comput Math 82(1):49–54MathSciNetzbMATHGoogle Scholar
  26. 26.
    Bellen A, Zennro M (2003) Numerical methods for delay differential equations. Clarendon Press, Oxford, pp 1–416Google Scholar
  27. 27.
    Shampine L, Gladwell I, Thompson S (2003) Solving ODEs with Matlab. Cambridge University Press, Cambridge, pp 1–273zbMATHGoogle Scholar
  28. 28.
    Mishra HK (2014) He–Laplace method for the solution of two-point boundary value. Probl Am J Math Anal 2(3):45–49Google Scholar
  29. 29.
    Bazar J, Ghazvini H (2009) Convergence analysis of the homotopy perturbation method for partial differential equations. Nonlinear Anal Real Word Appl 10:2633–2640zbMATHCrossRefGoogle Scholar
  30. 30.
    Patel T, Meher R (2017) Adomain decomposition Sumudu transform method for convicting fin with temperature-dependent thermal conductivity of fractional order energy balance equation. Int J Appl Comput Math 3:1879–1895MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2019

Authors and Affiliations

  1. 1.Department of Applied Sciences and HumanitiesKNITSultanpurIndia
  2. 2.Department of MathematicsJaypee University of Engineering and TechnologyGunaIndia

Personalised recommendations