Advertisement

Criteria for the Absence of Point Spectrum on the Boundary of the Numerical Range of Tridiagonal Matrices

  • P. D. SrivastavaEmail author
  • Riddhick Birbonshi
  • Arnab Patra
Research Article
  • 17 Downloads

Abstract

In this paper, we have obtained some conditions under which the boundary of the numerical range of tridiagonal matrices has no point spectrum. As a consequence of these results, the boundary of the numerical range of these tridiagonal matrices may be non-round only at the points where it touches the essential spectrum.

Keywords

Spectrum of an operator Infinite matrices Sequence spaces Numerical range 

Mathematics Subject Classification

47A12 47A10 

References

  1. 1.
    Bilgiç H, Furkan H (2008) On the fine spectrum of the generalized difference operator \(B(r, s)\) over the sequence spaces \(l_p\) and \(bv_p, (1< p<\infty )\). Nonlinear Anal 68(3):499–506MathSciNetCrossRefGoogle Scholar
  2. 2.
    Furkan H, Bilgiç H, Başar F (2010) On the fine spectrum of the operator \(B(r, s, t)\) over the sequence spaces \(l_p\) and \(bv_p, (1< p<\infty )\). Comput Math Appl 60(7):2141–2152MathSciNetCrossRefGoogle Scholar
  3. 3.
    Karakaya V, Altun M (2010) Fine spectra of upper triangular double-band matrices. J Comput Appl Math 234(5):1387–1394MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chandra Tripathy B, Das R (2015) Spectrum and fine spectrum of the upper triangular matrix \(U(r, s)\) over the sequence space \(cs\). Proyecciones 34(2):107–125MathSciNetCrossRefGoogle Scholar
  5. 5.
    Srivastava P, Kumar S (2012) Fine spectrum of the generalized difference operator \(\triangle _{v}\) on sequence space \(l_1\). Thai J Math 8(2):221–233Google Scholar
  6. 6.
    Karaisa A (2012) Fine spectra of upper triangular double-band matrices over the sequence space \(l_p, (1<p<\infty )\). Discrete Dyn Nat Soc 2012:1–19MathSciNetCrossRefGoogle Scholar
  7. 7.
    Karaisa A, Başar F (2013) Fine spectra of upper triangular triple-band matrices over the sequence space \(l_p, (0<p<\infty )\). Abstr Appl Anal 2013:1–10zbMATHGoogle Scholar
  8. 8.
    Dutta S, Baliarsingh P (2012) On the fine spectra of the generalized rth difference operator \(\triangle _{v}^r\) on the sequence space \(l_1\). Appl Math Comput 219(4):1776–1784MathSciNetzbMATHGoogle Scholar
  9. 9.
    Baliarsingh P, Dutta S (2014) On a spectral classification of the operator \(\triangle _{v}^r\) r over the sequence space \(c_0\). Proc Nat Acad Sci India Sect A 84(4):555–561MathSciNetCrossRefGoogle Scholar
  10. 10.
    Karakaya V, Manafov MD, Şimşek N (2012) On the fine spectrum of the second order difference operator over the sequence spaces \(l_p\) and \(bv_p, (1< p<\infty )\). Math Comput Model 55(3):426–431CrossRefGoogle Scholar
  11. 11.
    Chien MT (1996) On the numerical range of tridiagonal operators. Linear Algebra Appl 246:203–214MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chien MT, Nakazato H (2011) The numerical range of a tridiagonal operator. J Math Anal Appl 373(1):297–304MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hansmann M (2015) On non-round points of the boundary of the numerical range and an application to non-selfadjoint Schrödinger operators. J Spectr Theory 5(4):731–750MathSciNetCrossRefGoogle Scholar
  14. 14.
    Spitkovsky IM (2000) On the non-round points of the boundary of the numerical range. Linear Multilinear Algebra 47(1):29–33MathSciNetCrossRefGoogle Scholar
  15. 15.
    Sims B (1974) On a connection between the numerical range and spectrum of an operator on a hilbert space. J Lond Math Soc 8:57–59MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hansmann M (2014) Absence of eigenvalues of non-selfadjoint Schrödinger operators on the boundary of their numerical range. Proc Am Math Soc 142(4):1321–1335MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hildebrandt S (1966) Über den numerischen Wertebereich eines Operators. Math Ann 163:230–247 (German)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Böttcher A, Grudsky SM (2005) Spectral properties of banded Toeplitz matrices. SIAM, PhiladelphiaCrossRefGoogle Scholar
  19. 19.
    Kato T (2013) Perturbation theory for linear operators. Springer, BerlinGoogle Scholar
  20. 20.
    Ghoberg I, Goldberg S, Kaashoek M (1990) Classes of linear operators, vol 49. Birkhäuser, BaselCrossRefGoogle Scholar
  21. 21.
    Dombrowski J (1980) Spectral properties of real parts of weighted shift operators. Indiana Univ Math J 29:249–259MathSciNetCrossRefGoogle Scholar
  22. 22.
    Janas J, Moszyński M (2002) Alternative approaches to the absolute continuity of Jacobi matrices with monotonic weights. Integral Equ Oper Theory 43(4):397–416MathSciNetCrossRefGoogle Scholar
  23. 23.
    Janas J, Malejki M, Mykytyuk Y (2003) Similarity and the point spectrum of some non-selfadjoint Jacobi matrices. Proc Edinb Math Soc (2) 46(03):575–595MathSciNetCrossRefGoogle Scholar
  24. 24.
    Dombrowski J, Pedersen S (2000) Spectral properties of Jacobi matrices whose diagonal sequences are multiples of the off diagonal sequence. Math Sci Res Hotline 4(10):1–21MathSciNetzbMATHGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2018

Authors and Affiliations

  • P. D. Srivastava
    • 1
    • 2
    Email author
  • Riddhick Birbonshi
    • 1
  • Arnab Patra
    • 1
  1. 1.Department of MathematicsIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Department of MathematicsIndian Institute of Technology BhilaiRaipurIndia

Personalised recommendations