Advertisement

Flat Rotational Surfaces with Pointwise 1-Type Gauss Map Via Generalized Quaternions

  • Ferdag Kahraman AksoyakEmail author
  • Yusuf Yayli
Research Article
  • 31 Downloads

Abstract

In this paper, we determine a rotational surface by means of generalized quaternions and study this flat rotational surface with pointwise 1-type Gauss map in four-dimensional generalized space \(\mathbb {E}_{\alpha \beta }^{4}\). Also, for some special cases of \(\alpha \) and \(\beta \), we obtain the characterizations of flat rotational surfaces with pointwise 1-type Gauss map in four-dimensional Euclidean space \(\mathbb {E}^{4}\) and four-dimensional pseudo-Euclidean space \(\mathbb {E}_{2}^{4}\).

Keywords

Quaternions Gauss map Pointwise 1-type Gauss map Rotational surface 

Mathematics Subject Classification

53B25 53C40 

References

  1. 1.
    Pottman H, Wallner J (2000) Computational line geometry. Springer, Berlin Heidelberg, New YorkGoogle Scholar
  2. 2.
    Jafari M (2012) Generalized Hamilton operators and Lie groups. Ph.D. thesis, Ankara University, Ankara, TurkeyGoogle Scholar
  3. 3.
    Jafari M, Yaylı Y (2013) Rotation in four dimensions via generalized Hamilton operators. Kuwait J Sci 40(1):67–79MathSciNetGoogle Scholar
  4. 4.
    Jafari M, Yaylı Y (2015) Generalized quaternions and rotation in 3-space \(\mathbb{E}_{\alpha \beta }^{3}\). TWMS J Pure Appl Math 6(2):224–232MathSciNetzbMATHGoogle Scholar
  5. 5.
    Arslan K, Bulca B, Kosava D (2017) On generalized rotational surfaces in Euclidean spaces. J Korean Math Soc 54:999–1013MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen BY, Piccinni P (1987) Submanifolds with finite type Gauss map. Bull Aust Math Soc 35:161–186MathSciNetCrossRefGoogle Scholar
  7. 7.
    Arslan K, Bayram BK, Kim YH, Murathan C, Öztürk G (2011) Vranceanu surface in \(\mathbb{E}^{4}\) with pointwise 1-type Gauss map. Indian J Pure Appl Math 42:41–51MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dursun U, Turgay NC (2012) General rotational surfaces in Euclidean space \(\mathbb{E}^{4}\) with pointwise 1-type Gauss map. Math Commun 17:71–81MathSciNetzbMATHGoogle Scholar
  9. 9.
    Kim YH, Yoon DW (2004) Classification of rotation surfaces in pseudo Euclidean space. J Korean Math 41:379–396MathSciNetCrossRefGoogle Scholar
  10. 10.
    Yoon DW (2003) Some properties of the Clifford torus as rotation surface. Indian J Pure Appl Math 34:907–915MathSciNetzbMATHGoogle Scholar
  11. 11.
    Arslan K, Bulca B, Kılıç B, Kim YH, Murathan C, Öztürk G (2011) Tensor product surfaces with pointwise 1-type Gauss map. Bull Korean Math Soc 48:601–609MathSciNetCrossRefGoogle Scholar
  12. 12.
    Aksoyak KF, Yaylı Y (2015) General rotational surfaces with pointwise 1-type Gauss map in pseudo-Euclidean space \(\mathbb{E}_{2}^{4}\). Indian J Pure Appl Math 46(1):107–118MathSciNetCrossRefGoogle Scholar
  13. 13.
    Aksoyak KF, Yaylı Y (2016) Flat rotational surfaces with pointwise 1-type Gauss map in \(\mathbb{E}^{4}\). Honam Math J 38:305–316MathSciNetCrossRefGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2018

Authors and Affiliations

  1. 1.Division of Elementary Mathematics EducationAhi Evran UniversityKirşehirTurkey
  2. 2.Department of MathematicsAnkara UniversityAnkaraTurkey

Personalised recommendations