Advertisement

Elastic and Ultrasonic Properties of Rare-earth Lutetium Monopnictides

  • Devraj Singh
  • Amit Kumar
  • Ram Krishna Thakur
  • Raj Kumar
Research Article
  • 37 Downloads

Abstract

We present ultrasonic properties of lutetium monopnictides (LuPn: Pn = As and Sb) with the help of second and third order elastic constants in the temperature range 100–300 K. These elastic constants have been computed using Coulomb and Born–Mayer potential with the help of two basic parameters i.e., nearest neighbor distance and hardness parameter. First these elastic constants are applied to compute some mechanical constants such as bulk moduli (B), shear moduli (G), tetragonal moduli (Cs), Poisson’s ratio (ν) and Zener anisotropy ratio (A). The fracture to toughness ratio i.e., G/B was found greater than 0.57, therefore LuAs and LuSb are brittle in nature. In second part of present investigation we evaluated ultrasonic properties such as wave velocities for longitudinal and shear modes, Debye average velocity, Debye temperature and Grüneisen parameters, thermal relaxation time, thermal conductivity, acoustic coupling constants and ultrasonic attenuation due to phonon–phonon interaction along 〈100〉, 〈110〉 and 〈111〉 orientations. The achieved results of present work are compared and discussed with other rare-earth monopnictides.

Keywords

Monopnictides Elastic constants Ultrasonic velocity Grüneisen parameters Ultrasonic attenuation 

Notes

Acknowledgements

We are very grateful to the reviewers, the advisors and the editor for their careful and meticulous evaluation to enrich the quality of our manuscript. Authors are also grateful to Mr. Amrit Nath Thulal for scrupulously reading the manuscript.

References

  1. 1.
    Krivoy EM (2013) Rare–earth monopnictide alloys for tunable, epitaxial metal, Ph.D. Dissertation, The University of Texas, Austin. http://hdl.handle.net/2152/21336. https://repositories.lib.utexas.edu/handle/2152/21336. Accessed on 13 Feb 2017
  2. 2.
    Zeng M, Fang C, Chang G, Chen Y, Hsieh T, Bansil A, Lin H, Fu L (2015) Topological semimetals and topological insulators in rare earth monopnictides. https://arxiv.org/pdf/1504.03492.pdf. Accessed on 13 Feb 2017
  3. 3.
    Petit L, Tyer R, Szotek Z, Temmerman WM, Svane A (2010) Rare earth monopnictides and monochalcogenides from first principles: towards an electronic phase diagram of strongly correlated materials. New J Phys 12:113041CrossRefGoogle Scholar
  4. 4.
    Jha PK, Sanyal SP, Singh RK (2002) The lattice dynamical studies of rare-earth compounds: electron–phonon interaction. Proc Indian Natl Sci Acad Sect A Phys Sci 68:57–72Google Scholar
  5. 5.
    Neupane M, Hosen MM, Belopolski I et al (2016) Observation of Dirac-like semi-metallic phase in NdSb. J Phys Condens Matter 28:23LT02CrossRefGoogle Scholar
  6. 6.
    Lou R, Fu B-B, Xu QN et al (2017) Evidence of topological insulator state in the semimetal LaBi. Phys Rev B 95:115140ADSCrossRefGoogle Scholar
  7. 7.
    Zeng L-K, Lou R, Wu D-S et al (2016) Compensated semimetal LaSb with unsaturated magnetoresistance. Phys Rev Lett 117:127204ADSCrossRefGoogle Scholar
  8. 8.
    Jha PK, Sanyal SP (1998) Pressure-volume relation and pressure induced structural phase transformation in ytterbium pnictides. Phys Stat Sol b 205:465–471ADSCrossRefGoogle Scholar
  9. 9.
    Jha PK, Sanyal SP (1995) Lattice vibrations in Yb-pnictide compounds. Phys Rev B 52:15898–15902ADSCrossRefGoogle Scholar
  10. 10.
    Nayak J, Wu S-C, Kumar N et al (2017) Multiple Dirac cones at the surface of the topological metal LaBi. Nature Commun 8:13942.  https://doi.org/10.1038/ncomms13942 ADSCrossRefGoogle Scholar
  11. 11.
    Gupta SD, Gupta SK, Jha PK (2010) First-principles lattice dynamical study of lanthanum nitride under pseudopotential approximation. Comput Mat Sci 49:910–915CrossRefGoogle Scholar
  12. 12.
    Roondhe B, Upadhyay D, Som N, Pillai SB, Shinde S, Jha PK (2017) Structural, electronic and dynamical properties of curium monopnictides: density functional theory. J Electron Mater 46:1842–1848ADSCrossRefGoogle Scholar
  13. 13.
    Jha PK, Sanyal SP (2003) High pressure behavior of NpSe and NpTe. J Phys Chem Solids 64:127–131ADSCrossRefGoogle Scholar
  14. 14.
    Jha PK, Sanyal SP (1993) Lattice vibrations in intermediate valence compounds. Indian J Pure Appl Phys 31:469–473Google Scholar
  15. 15.
    Rukmangad A, Aynyas M, Sanyal SP (2009) Structural and elastic properties of rare-earth nitrides at high pressure. Indian J Pure Appl Phys 47:114–118Google Scholar
  16. 16.
    Srivastava V, Bandyopadhyay AK, Prafulla JK, Sanyal SP (2003) High pressure phase transition and elastic properties of cerium chalcogenides and pnictides. J Phys Chem Solids 64:907–912ADSCrossRefGoogle Scholar
  17. 17.
    Mir SH, Jha PC, Islam MS, Banerjee A, Luo W, Dabhi SD, Jha PK, Ahuja R (2016) Static and dynamical properties of heavy actinide monopnictides of lutetium. Sci Rep 6:29309ADSCrossRefGoogle Scholar
  18. 18.
    Gupta DC, Bhat IH (2013) Electronic, ductile, phase transition and mechanical properties of Lu-monopnictides under high pressures. J Mol Model 19:5343–5354CrossRefGoogle Scholar
  19. 19.
    Sahoo BD, Mukherjee D, Joshi KD, Kaushik TC, Gupta SC (2016) Pressure induced phase transition and thermo-physical properties in LuX (X = N, P). Mater Res Express 3:046502ADSCrossRefGoogle Scholar
  20. 20.
    Pagare G, Chouhan SS, Soni P, Sanyal SP, Rajagopalan M (2010) First principles study of structural, electronic and elastic properties of lutetium monopnictides. Comput Mater Sci 50:538–544CrossRefGoogle Scholar
  21. 21.
    Shirotani I, Yamanashi K, Hayashi J, Ishimatsu N, Shimomura O, Kikegawa T (2003) Pressure-induced phase transitions of lanthanide monoarsenides LaAs and LuAs with a NaCl-type structure. Solid State Commun 127:573–576ADSCrossRefGoogle Scholar
  22. 22.
    Tosi MP (1964) Cohesion of ionic solids in the Born model. In: Seitz F, Turnbull D (eds) Solid state physics, vol 16. Academic, New York, pp 1–120Google Scholar
  23. 23.
    Singh D, Mishra G, Kumar R, Yadav RR (2017) Temperature dependence of elastic and ultrasonic properties of sodium borohydride. Commun Phys 27:151–164CrossRefGoogle Scholar
  24. 24.
    Langueur H, Kassali K (2017) Density functional study of the carbon dependence of the structural, mechanic, thermodynamic, and dynamic properties of SiC Alloys. Int J Thermophys 38:41ADSCrossRefGoogle Scholar
  25. 25.
    Newnham RE (2005) Properties of materials: anisotropy, symmetry, structure. Oxford University Press, New YorkGoogle Scholar
  26. 26.
    Mattesini M, Magnuson M, Tasnádi F, Höglund C, Abrikosov Igor A, Hultman L (2009) Elastic properties and electrostructural correlations in ternary scandium-based cubic inverse perovskites: a first-principles study. Phys Rev B 79:125122ADSCrossRefGoogle Scholar
  27. 27.
    Anderson OL (1963) A simplified method for calculating the debye temperature from elastic constants. J Phys Chem Solids 24:909–917ADSCrossRefGoogle Scholar
  28. 28.
    Bhalla V, Singh D, Mishra G, Wan M (2016) Mechanical and thermophysical properties of europium monochalcogenides. J Pure Appl Ultrason 38:23–27Google Scholar
  29. 29.
    Morelli DT, Slack GA (2006) High thermal conductivity materials. Springer, New YorkGoogle Scholar
  30. 30.
    Bhalla V, Singh D (2016) Anisotropic assessment of ultrasonic wave velocity and thermal conductivity of ErX (X: N, As). Indian J Pure Appl Phys 54:40–45Google Scholar
  31. 31.
    Akhieser A (1939) On the absorption of sound in solids. J Phys (USSR) 1:277–287Google Scholar
  32. 32.
    Tripathy C, Singh D, Paikaray R (2018) Behaviour of elastic and ultrasonic properties of curium monopnictides. Can J Phys 96:513–518ADSCrossRefGoogle Scholar
  33. 33.
    Singh D, Kaushik S, Pandey SK, Mishra G, Bhalla V (2016) Mechanical and thermophysical properties of neptunium monopnictides. VNU J Sci Math Phys 32:43–53Google Scholar
  34. 34.
    Bhalla V, Singh D, Jain SK (2016) Mechanical and thermophysical properties of cerium monopnictides. Int J Thermophys 37:33ADSCrossRefGoogle Scholar
  35. 35.
    Murtaza G, Gupta SK, Seddik T et al (2014) Structural, electronic, optical and thermodynamic properties of cubic REGa3 (RE = Sc or Lu) compounds: ab initio study. J Alloys Compd 597:36–44CrossRefGoogle Scholar
  36. 36.
    Haines J, Leger JM, Bocquillon G (2001) Synthesis and design of superhard materials. Annu Rev Mater Res 31:1–23ADSCrossRefGoogle Scholar
  37. 37.
    Gray DE (1957) American Institute of physics handbook. McGraw-Hill Book Company Inc., New YorkzbMATHGoogle Scholar
  38. 38.
    Singh D, Pandey DK, Yadawa PK (2009) Ultrasonic wave propagation in rare-earth monochalcogenides. Cent Eur J Phys 7:198–205Google Scholar

Copyright information

© The National Academy of Sciences, India 2018

Authors and Affiliations

  • Devraj Singh
    • 1
  • Amit Kumar
    • 2
  • Ram Krishna Thakur
    • 2
  • Raj Kumar
    • 3
  1. 1.Department of Applied PhysicsAmity School of Engineering and TechnologyBijwasan, New DelhiIndia
  2. 2.Amity School of Applied SciencesAmity UniversityManesar, GurgaonIndia
  3. 3.Department of PhysicsGurgaon Institute of Technology and ManagementGurgaonIndia

Personalised recommendations