Improvement in Dielectric Properties of CaCu3Ti4O12 Thin Film Over Pt(111)/Ti/SiO2/Si Substrate by Spin Coating Method

Research Article
  • 18 Downloads

Abstract

High quality calcium copper titanium oxide (CaCu3Ti4O12, CCTO) thin film has been deposited on Pt(111)/Ti/SiO2/Si substrate by sol–gel method using the spin coating technique. The structural analysis shows that CCTO thin film belonging to the cubic crystal structure with Im3 space group. The morphological result show that the film surface are smooth, fully covered, homogeneous, crack free with existence of many pinholes. No peaks of any impurities other than CCTO are detected in the energy dispersive analysis by X-ray spectra indicating the high purity of resultant product. The absorption band of Fourier transform infrared spectra is observed in the range of 380–700 cm−1 which arises from the mixed vibrations of CuO4 and TiO6 groups prevailing in the cubic CCTO. The luminescence spectrum of CCTO thin film has a weak green and strong red emission centered at 536 and 786 nm, respectively. The effective dielectric constant of CCTO dielectric layer in Si/SiO2/Ti/Pt/CCTO/Pt thin film capacitor is found to decrease with increase in frequency. It is found that capacitor reached a high dielectric constant (εr) of 1067 and a capacitance (C) of 1.192 µF at 100 kHz due to the improved oxygen vacancies of trapped electrons and also from the effect of electrode-film interface. We compare our dielectric constant to previously reported results and it is recommended to CCTO use of an attractive material for the production of miniaturized capacitor in microelectronic applications.

Keywords

Calcium copper titanate Sol–gel synthesis Nanostructures Capacitor Dielectric study 

Notes

Acknowledgements

Authors are thankful to the Directorate of Extramural Research and Intellectual Property Rights (ER and IPR), Defence Research and Development Organization (DRDO), New Delhi, India for providing the financial support (Project No. ERIP/ER/1104613/M/01/1460). They also acknowledge their gratitude to Thiru. A. Tenzing, Correspondent and Dr.S.Arivazhagan, Principal, Mepco Schlenk Engineering College, Sivakasi for their constant support and encouragement.

References

  1. 1.
    Moore GE (1965) Cramming more components onto integrated circuits. Electronics 38:114–117.  https://doi.org/10.1109/jproc.1998.658762 Google Scholar
  2. 2.
    Nigro RL, Toro RG, Malandrino G, Bettinelli M, Speghini A, Fragala IL (2004) A novel approach to synthesizing calcium copper titanate thin films with giant dielectric constants. Adv Mater 16:891–895.  https://doi.org/10.1002/adma.200306634 CrossRefGoogle Scholar
  3. 3.
    Singh DP, Mohapatra YN, Agarwal DC (2009) Dielectric and leakage current properties of sol–gel derived calcium copper titanate (CCTO) thin films and CCTO/ZrO2 multilayers. Mater Sci Eng, B 157:58–65.  https://doi.org/10.1016/j.mseb.2008.12.017 CrossRefGoogle Scholar
  4. 4.
    Homes CC, Vogt T, Shapiro SM, Wakimoto S, Ramirez AP (2001) Optical response of high-dielectric-constant perovskite-related oxide. Science 293:673–676.  https://doi.org/10.1126/science.1061655 ADSCrossRefGoogle Scholar
  5. 5.
    Krohns S, Lunkenheimer P, Ebbinghaus SG, Loidl A (2007) Broadband dielectric spectroscopy on single-crystalline and ceramic CaCu3Ti4O12. Appl Phys Lett 91:022910.  https://doi.org/10.1063/1.2757098 ADSCrossRefGoogle Scholar
  6. 6.
    Sinclair DC, Adams TB, Morrison FD, West AR (2002) CaCu3Ti4O12: one-step internal barrier layer capacitor. Appl Phys Lett 80:2153–2155.  https://doi.org/10.1063/1.1463211 ADSCrossRefGoogle Scholar
  7. 7.
    Rai AK, Singh NK, Acharya SK, Singh L, Mandal KD (2012) Effect of tantalum substitutions on microstructures and dielectric properties of calcium copper titanate (CaCu3Ti4O12) ceramic. Mater Sci Eng, B 177:1213–1218.  https://doi.org/10.1016/j.mseb.2012.06.002 CrossRefGoogle Scholar
  8. 8.
    Dubey AK, Singh P, Singh S, Kumar D, Parkash O (2011) Charge compensation, electrical and dielectric behavior of lanthanum doped CaCu3Ti4O12. J Alloys Compd 509:3899–3906.  https://doi.org/10.1016/j.jallcom.2010.12.156 CrossRefGoogle Scholar
  9. 9.
    Dai YQ, Dai JM, Tang XW, Zhang KJ, Zhu XB, Yang J, Sun YP (2014) Thickness effect on the properties of BaTiO3–CoFe2O4 multilayer thin films prepared by chemical solution deposition. J Alloys Compd 587:681–687.  https://doi.org/10.1016/j.jallcom.2013.11.026 CrossRefGoogle Scholar
  10. 10.
    Dang G, Muralt P (2010) On origin and intrinsic electrical properties of the colossal dielectric constant state in CaCu3Ti4O12. IOP Conf Ser Mater Sci Eng 8:012016.  https://doi.org/10.1088/1757-899X/8/1/012016 CrossRefGoogle Scholar
  11. 11.
    Fiorenz P, Nigro RL, Raineri V (2011) Scanning probe microscopy on heterogeneousCaCu3Ti4O12 thin films. Nanoscale Res Lett 6:118–121.  https://doi.org/10.1186/1556-276X-6-118 ADSCrossRefGoogle Scholar
  12. 12.
    Moura F, Aguiar EC, Longo E, Varela JA, Simoes AZ (2011) Dielectric properties of soft chemical method derived CaCu3Ti4O12 thin films onto Pt/TiO2/Si(1 0 0) substrates. J Alloys Compd 509:3817–3821.  https://doi.org/10.1016/j.jallcom.2010.12.184 CrossRefGoogle Scholar
  13. 13.
    Altamore C, Tringali C, Sparta N, Marco SD, Grasso A, Ravesi S (2010) Characterization of the high density plasma etching process of CCTO thin films for the fabrication of very high density capacitors. IOP Conf Ser Mater Sci Eng 8:012017–012023.  https://doi.org/10.1088/1757-899X/8/1/012017 CrossRefGoogle Scholar
  14. 14.
    Kang HM, Baek SH, Song JH, Cho YS, Choi JW (2014) Full range dielectric characteristics of calcium copper titanate thin films prepared by continuous composition-spread sputtering. ACS Comb Sci 16:478–484.  https://doi.org/10.1021/co500057u CrossRefGoogle Scholar
  15. 15.
    Aspelmeyer M, Klemradt U, Hartner W, Bachhofer H, Schindler G (2001) High-resolution X-ray reflectivity study of thin layered Pt-electrodes for integrated ferroelectric devices. J Phys D Appl Phys 34:A173–A178.  https://doi.org/10.1088/0022-3727/34/10A/336 ADSCrossRefGoogle Scholar
  16. 16.
    Yuichi M, Masahiko H, Yukihiro K, Hideo M, Yoshihisa F (1998) Thermal stability of Pt bottom electrodes for ferroelectric capacitors. Jpn J Appl Phys 37:L465–L467.  https://doi.org/10.1143/JJAP.37.L465 CrossRefGoogle Scholar
  17. 17.
    Felix AA, Rupp JLM, Varela JA, Orlandi MO (2012) Multi-functional properties of CaCu3Ti4O12 thin films. J Appl Phys 112:054512.  https://doi.org/10.1063/1.4751344 ADSCrossRefGoogle Scholar
  18. 18.
    Cao Y, Di Q, Zhu L, Li A, Wu D (2015) Resistive switching characteristics in TiO2/LaAlO3 heterostructures sandwiched in Pt electrodes. Adv Mater Sci Eng.  https://doi.org/10.1155/2015/470107 Google Scholar
  19. 19.
    Mehraj S, Ansari MS, Alimuddin (2015) Structural, electrical and magnetic properties of (Fe, Co) co-doped SnO2 diluted magnetic semiconductor nanostructures. Physica E 65:84–92.  https://doi.org/10.1016/j.physe.2014.08.016 ADSCrossRefGoogle Scholar
  20. 20.
    Klug P, Alexander LE (1954) X-ray diffraction procedure. Wiley, New YorkMATHGoogle Scholar
  21. 21.
    Anil Kumar C, Pamu D (2015) Dielectric optical and electric studies on nanocrystalline Ba5Nb4O15 thin films deposited by RF magnetron sputtering. Appl Surf Sci 340:56–63.  https://doi.org/10.1016/j.apsusc.2015.02.172 ADSCrossRefGoogle Scholar
  22. 22.
    Li YW, Hu ZG, Sun JL, Meng XJ, Chu JH (2008) Preparation and properties of CaCu3Ti4O12 thin film grown on LaNiO3-coated silicon by sol–gel process. J Cryst Growth 310:378–381.  https://doi.org/10.1016/j.jcrysgro.2007.11.025 ADSCrossRefGoogle Scholar
  23. 23.
    Almeida AFL, Fechine PBA, Graca MPF, Valente MA, Sombra ASB (2009) Structural and electrical study of CaCu3Ti4O12 (CCTO) obtained in a new ceramic procedure. J Mater Sci: Mater Electron 20:163–170.  https://doi.org/10.1007/s10854-008-9675-4 Google Scholar
  24. 24.
    Jesurani S, Kanagesan S, Velmurugan R, Thirupathi C, Sivakumar M, Kalaivani T (2011) Nanoparticles of the giant dielectric material, calcium copper titanate from a sol–gel technique. Mater Lett 65:3305–3308.  https://doi.org/10.1016/j.matlet.2011.06.107 CrossRefGoogle Scholar
  25. 25.
    Thiruramanathan P, Marikani A, Madhavan D (2015) A comparative study of nanostructured calcium copper titanate thin film and powder and their properties. Int J Mater Res 106:1189–1195.  https://doi.org/10.3139/146.111294 CrossRefGoogle Scholar
  26. 26.
    Parra R, Joanni E, Espinosa JWM, Tararam R, Cilense M, Bueno PR, Varela JA, Longo E (2008) Photoluminescent CaCu3Ti4O12-based thin films synthesized by a sol–gel method. J Am Ceram Soc 91:4162–4164.  https://doi.org/10.1111/j.1551-2916.2008.02817.x CrossRefGoogle Scholar
  27. 27.
    Sequinel T, Garcia IG, Tebcherani SM, Kubaski ET, Oliveira LH, Li MS, Longo E, Varela JA (2014) Red shift and higher photoluminescence emission of CCTO thin films undergoing pressure treatment. J Alloys Compd 583:488–491.  https://doi.org/10.1016/j.jallcom.2013.08.210 CrossRefGoogle Scholar
  28. 28.
    Clugston M, Flemming R (2000) Advanced chemistry. OUP, OxfordGoogle Scholar
  29. 29.
    Happek U, Okamoto S, Setlur AA (2009) Phosphors for new-generation lighting. Electrochemical Society, PenningtonGoogle Scholar
  30. 30.
    Barber P, Balasubramanian S, Anguchamy Y, Gong S, Wibowo A, Gao H, Ploehn H, ZurLoye HC (2009) Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2:1697–1733.  https://doi.org/10.3390/ma2041697 ADSCrossRefGoogle Scholar
  31. 31.
    Swapna R, Ashok M, Muralidharan G, Santhosh Kumar MC (2013) Microstructural, electrical and optical properties of ZnO: Mo thin films with various thickness by spray pyrolysis. J Anal Appl Phys 102:68–75.  https://doi.org/10.1016/j.jaap.2013.04.001 Google Scholar
  32. 32.
    Marques VS, Cavalcante LS, Sczancoski JC, Volanti DP, Espinosa JWM, Joya MR, Santos MRMC, Pizani PS, Varela JA, Longo E (2008) Influence of microwave energy on structural and photoluminescent behavior of CaTiO3 powders. Solid State Sci 10:1056–1061.  https://doi.org/10.1016/j.solidstatesciences.2007.11.004 ADSCrossRefGoogle Scholar
  33. 33.
    Nelson N, Rakowski RT, Franks J, Woolliams P, Weaver P, Jones BJ (2014) The effect of substrate geometry and surface orientation on the film structure of DLC deposited using PECVD. Surf Coat Technol 254:73–78.  https://doi.org/10.1016/j.surfcoat.2014.05.066 CrossRefGoogle Scholar
  34. 34.
    Subramanian MA, Sleight AW (2002) ACu3Ti4O12 and ACu3Ru4O12 perovskites: high dielectric constants and valence degeneracy. Solid State Sci 4:347–351.  https://doi.org/10.1016/S1293-2558(01)01262-6 ADSCrossRefGoogle Scholar
  35. 35.
    Reddy MVR, Kumaer JS, Reddy KN, Rao UVS (1987) Dielectric properties of NaYF4 thin films thin films. Phys Stat Sol (a) 102s:321–326.  https://doi.org/10.1002/pssa.2211020134 ADSCrossRefGoogle Scholar
  36. 36.
    Fiorenza P, Nigro RL, Raineri V, Malandrino G, Toro RG, Catalano R (2010) High capacitance density by CaCu3Ti4O12 thin films. J Appl Phys 108:074103–074107.  https://doi.org/10.1063/1.3488893 ADSCrossRefGoogle Scholar
  37. 37.
    Koops CG (1951) On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys Rev 83(1951):121–124.  https://doi.org/10.1103/PhysRev.83.121 ADSCrossRefGoogle Scholar
  38. 38.
    Mehraj S, Shahnawaze M, Alimuddin A (2015) Annealed SnO2 thin films: structural, electrical and their magnetic properties. Thin Solid Films 589:57–65.  https://doi.org/10.1016/j.tsf.2015.04.065 ADSCrossRefGoogle Scholar
  39. 39.
    Foschini CR, Tararam R, Simoes Z, Cilense M, Longo E, Varela JA (2013) CaCu3Ti4O12 thin films with non-linear resistivity deposited by RF-sputtering. J Alloys Compd 574:604–608.  https://doi.org/10.1016/j.jallcom.2013.05.216 CrossRefGoogle Scholar
  40. 40.
    Yuana WX, Hark SK, Ya XuH, Mei WN (2012) Investigation on the growth of CaCu3Ti4O12 thin film and the origins of its dielectric relaxations. Solid State Sci 14:35–39.  https://doi.org/10.1016/j.solidstatesciences.2011.10.012 ADSCrossRefGoogle Scholar
  41. 41.
    Ramirez MA, Simoes AZ, Felix AA, Tararam R, Longo E, Varela JA (2011) Electric and dielectric behavior of CaCu3Ti4O12-based thin films obtained by soft chemical method. J Alloys Compd 509:9930–9933.  https://doi.org/10.1016/j.jallcom.2011.07.098 CrossRefGoogle Scholar
  42. 42.
    Zhao YL, Pan GW, Ren QB, Cao YG, Feng LX, Jiao ZK (2003) High dielectric constant in CaCu3Ti4O12 thin film prepared by pulsed laser deposition. Thin Solid Films 445:7–13.  https://doi.org/10.1016/S0040-6090(03)00666-7 ADSCrossRefGoogle Scholar
  43. 43.
    Lee SY, Choi SM, Kim MY, Yoo S, Lee JH, Jo W, Kim YH, Choi KJ (2011) Microstructures and electrical properties of CaCu3Ti4O12 thin films on Pt/TiO2/SiO2/Si substrates by pulsed laser deposition. J Mater Res 26:2543–2551.  https://doi.org/10.1557/jmr.2011.226 ADSCrossRefGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2018

Authors and Affiliations

  1. 1.Department of PhysicsMepco Schlenk Engineering CollegeSivakasiIndia
  2. 2.Department of ChemistryMepco Schlenk Engineering CollegeSivakasiIndia

Personalised recommendations